
Data Science Project

Real – Time Customer Churn Prediction in

Telecom Companies

Fellipe Augusto Soares Silva

2020

2

Chapters

Summary ... 5

1. Introduction .. 6

2. Business Problem .. 8

3. Dataset .. 9

3.1 Training Dataset .. 9

3.2 Test Dataset .. 9

4. Data Dictionary ... 10

5. PySpark Shell ... 12

6. Feature Engineering .. 14

7. Exploratory Analysis .. 17

7.1 Global map of the States under study (according to the dataset) ... 20

7.2 Higher and lower churn rate states .. 23

7.3 First Business Opportunity - International Plans .. 25

7.4 Second Business Opportunity - Customized International Plans .. 26

7.5 Third Business Opportunity - International Pricing Plans ... 27

7.6 Fourth Business Opportunity - Acquisition of Revenue .. 28

7.7 Fifth Business Opportunity - Customer Service .. 32

8. Building the Machine Learning Model .. 34

8.1 Data Balancing .. 35

8.2 Correlation and Variables of Importance ... 35

8.3 Pré – Processing of the Dataset .. 37

8.4 Machine Learning .. 38

8.5 Train/Test Split .. 38

8.6 Chosen Machine Learning Models .. 39

8.6.1 DecisionTreeClassifier X RandomForestClassifier ... 39

8.6.2 RandomForest Predictive Model x Underfitting x Overfitting .. 40

8.7 Predictive model (DecisionTree) and the business problem .. 43

8.7.1 Forecasting and Evaluating ... 44

8.7.2 Confusion Matrix ... 45

8.8 Predictive model (RandomForest) and the business problem ... 46

8.8.1 Forecasting and Evaluating ... 46

8.8.2 Confusion Matrix ... 47

3

9. Optimizing the Result .. 48

9.1 New Data Balancing .. 48

9.2 Machine Learning .. 49

9.3 New and Unknown Data ... 49

9.4 Confusion Matrix ... 50

10. Final Considerations .. 52

Source code ... 53

Figures

Figure 1 - Train Dataset ... 9

Figure 2 - Test Dataset .. 9

Figure 3 - Pyspark Shell I ... 12

Figure 4 - Pyspark Shell II .. 13

Figure 5 – Processing Jobs .. 16

Figure 6 – Longer Jobs ... 18

Figure 7 – DAG longer jobs ... 19

Figure 8 - Stage 12... 19

Figure 9 – Continuation Stage 12 .. 20

Figure 10 – Global Map ... 20

Figure 11 – Local Map ... 21

Figure 12 - WordCloud .. 22

Figure 13 – States Volume .. 23

Figure 14 - Churn Rate by State .. 24

Figure 15 - Top 5 States with most Churn ... 24

Figure 16 - Top 5 States with less Churn ... 25

Figure 17 - Cost per International Call .. 27

Figure 18 - Total minutes used per period .. 29

Figure 19 - Total revenue per period .. 29

Figure 20 - Total received in USD (proposal 01) ... 30

Figure 21 - Total received in USD (proposal 02) ... 31

Figure 22 - Number of Customer Service Calls ... 32

4

Figure 23 - Churn Index by Customer Service ... 33

Figure 24 - Amount of Data (%) .. 35

Figure 25 - DecisionTree ... 39

Figure 26 - RandomForest ... 40

Figure 27 - Underfitting x Overfitting.. 41

Figure 28 - Underfitting x Ideal x Overfitting .. 42

Figure 29 - DecisionTree Job ... 44

Figure 30 - Confusion Matrix Concept .. 45

Figure 31 - Confusion Matrix I ... 46

Figure 32 - Confusion Matrix II .. 47

Figure 33 - Data Balancing .. 48

Figure 34 - Confusion Matrix III ... 50

Figure 35 - PySpark Shell Final .. 51

Tabelas

Table 1 – Data Dictionary .. 10

Table 2 - Spark SQL.. 17

Table 3 - SQL ANSII .. 18

Table 4 - Lat-Long by State .. 21

Table 5 – International Plans by State .. 26

Table 6 – International Plan by Customer .. 26

Table 7 - Rates Per Minute .. 28

Table 8 - Proposed Fees .. 30

Table 9 - Revenue Differences .. 31

Table 10 – Correlation and Variables of Importance .. 36

Table 11 – Dense Vector x Sparse Vector ... 37

Table 12 - Target x Features .. 38

Table 13 - train x test .. 38

5

Summary

This project was developed with the purpose of predicting in real time the turnover of

customers of a Telecom Company providing metrics for the company to act more quickly in

preventing losses and also to retain satisfied consumer.

 Using Pyhton programming language together with Apache Spark (cluster computing

platform) large amounts of data were collected in order to implement a Supervised Machine

Learning Predictive Model in historical data.

 For this project, the dataset provided by the Telecom Company to Kaggle, an online

community of data and machine learning scientists owned by Google LLC, was used as open data

for the community.

With the data provided I developed: data loading, Feature engineering, cleaning and

transformation, processing in memory ensuring speed, exploratory analyzes evidencing

opportunities for the company, Machine Learning and a series of other practices in Spark.

 After exploring all the information provided by the data, two predictive classification

models were implemented in test data to train and analyze the model's accuracy. When selecting

the best machine learning model, new and unknown data was introduced in the model to test its

efficiency by presenting the results through a confusion matrix.

 This project's differential will also be the presentation of Spark Jobs being executed in real

time through PySparkShell, a powerful tool for interactive analysis of data behavior

.

Palavras – Chave: Data Science, Machine Learning, Python, Big Data, Exploratory Analysis, Business

Intelligence, BI, Spark, Pyspark, Pyspark Shell, Spark RDD, Spark SQL, Spark Streaming, Spark MLLib,

Forecasting, Accuracy, Confusion Matrix, Customer Churn, Telecom, Kaggle.

6

1. Introduction

 This project was developed using the Spark API1 for Python2, the Pyspark, and Jupyter

Notebook3 as a script development and testing plataform4, in addition to the Pyspark Shell for

interactive analysis of the execution of Jobs.

 Spark is a tool that belongs to the Apache Software Foundation, has a large capacity for

processing Big Data and is one of the most implemented mechanisms by companies today. In

addition to being open-source, Spark provides speed and ease in handling large amount of data

through its high-level libraries.

This project used the concepts and practices of:

• Batch processing with Spark RDD5;

• Query SQL with Spark SQL6;

• Spark Session to use Pyspark Dataframes7;

• Machine Learning with Spark MLLib8.

 Python is a programming language that has been gaining space in the job market due to

its versatility and functionality when combined with more than 100,000 other libraries such as:

• NumPy for numerical computing;

• Pandas for data manipulation;

• SciPy for scientific computing;

• MatplotLib for visualization and plotting.

In this way, Pyspark is a Spark API for the Python programming language, allowing the

combination of these two concepts previously presented, transforming the tool into an excellent

option for use in distributed computing, Big Data and data streaming projects.

1 https://spark.apache.org/docs/latest/api/python/index.html
2 Python is an object-oriented programming language.
3 https://jupyter.org/
4 Script is a set of instructions in code written in computer language so that it performs different functions inside a
program.
5 https://spark.apache.org/docs/latest/api/python/pyspark.html?highlight=rdd#pyspark.RDD
6 https://spark.apache.org/docs/latest/api/python/pyspark.sql.html?highlight=sql#module-pyspark.sql
7https://spark.apache.org/docs/latest/api/python/pyspark.sql.html?highlight=dataframe#pyspark.sql.SparkSession
.createDataFrame
8 https://spark.apache.org/docs/latest/api/python/pyspark.mllib.html?highlight=mllib

7

Jupyter Notebook9 , on the other hand, is an open-source project conceived in 2014 as a

web computing environment for creating codes through different programming languages such

as R10, Scala11, Python12 among others. Jupyter is a tool that also allows you to document your

work in different sources such as HTML, LaTeX13, PNG, PDF, SVG, among others.

Finally, a tool available for analyzing the distribution and recovery of data within the

cluster is Pyspark Shell14. With it, each job is presented in real time with its execution chain and

the time it took to finish the job.

 Like any Data Science project, before starting the parameterization of the predictive

model it is necessary to perform exploratory analysis and to know the dataset. During this

procedure, the Business Intelligence (BI) analysis presented several business opportunities that

will be highlighted in the chapter in question. It was also possible to add some information based

on the existing variables so that the predictive model was more accurate.

 To conclude, I will present all script items, commented line by line and presenting

graphical analysis to complement the understanding of the development of this Data Science

project.

 The beginning of business problem solving lies in understanding the problem itself, which

will be presented in the following chapter.

 During the presentation of this project I will expose the most important parts of the code.

You will find in the last chapter the source code commented in full. I decided to do it this way so

that the presentation of the project would be more dynamic and less heavy so that people from

different business areas could understand the potential of data science.

9 https://jupyter.org/
10 https://www.r-project.org/
11 https://www.scala-lang.org/
12 https://www.python.org/
13 https://www.latex-project.org/
14 https://spark.apache.org/docs/latest/quick-start.html

8

2. Business Problem

Customer Turnover, or Customer Churn, is an important metric for companies to assess

whether their business is flowing in a healthy way. This metric is defined by customers who

stopped consuming products from that company, regardless of the reason that caused the

disconnection of the customer from the company.

Performing the Customer Churn calculation is relatively simple:

𝐶ℎ𝑢𝑟𝑛 𝑅𝑎𝑡𝑒 =
𝑇𝑜𝑡𝑎𝑙 𝐷𝑖𝑠𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑠

𝑇𝑜𝑡𝑎𝑙 𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑠
× 100

For a company that has lost 5 of its 500 customers, the churn rate is equal to 1%. Each

market segment will determine its ideal churn rate, which can vary a lot, but the essential thing

is to understand why the company has customer disconnections because to understand is to

generate opportunities for improvement.

The churn value indicates only a portion of the problem, it is essential to go deeper into

the problem and raise important questions for the business to last and thrive in the competitive

job market. Listening to the customer is necessary, understanding your target audience helps to

direct more assertive projects and lead company employees according to the established goals,

study the market and its evolution, study your product and how it is marketed, among many

other sources. It is important not to let the churn rate increase.

For this project, we will study ways to predict Customer Churn in a telecom company

through a large set of data and not just looking at the customer's decision to maintain the service

or not. Data from international plans, number and duration of calls made, spent in periods of the

day will be studied, offering the machine learning model information to predict whether a

customer is likely to cancel their service plan.

With this information in hand, decision makers can act more quickly in the prevention

processes and not in the containment process as the latter may be too late and the customer has

already made his decision.

Aiming at this agility, Spark was chosen to process a large volume of information and

deliver reliability to the company, employees and its stakeholders. With this project I sought to

introduce intelligence to the business, generating opportunities and increasing profitability.

9

3. Dataset

For this business problem we have the following data set:

3.1 Training Dataset

This dataset is structured as follows:

Figure 1 - Train Dataset

3.2 Test Dataset

This dataset is structured as follows:

Figure 2 - Test Dataset

id state
account_

length
area_code

internatio

nal_plan

voice_mail

_plan

number_vmail

_messages

total_day_

minutes

total_day_

calls

total_day_

charge

total_eve_

minutes

total_eve_

calls

total_eve_

charge

total_night_

minutes

total_night_

calls

total_night_

charge

total_intl_

minutes

total_intl_

calls

total_intl_

charge

number_customer_

service_calls
churn

1 HI 101 area_code_510 no no 0 70,9 123 12,05 211,9 73 18,01 236 73 10,62 10,6 3 2,86 3 no

2 MT 137 area_code_510 no no 0 223,6 86 38,01 244,8 139 20,81 94,2 81 4,24 9,5 7 2,57 0 no

3 OH 103 area_code_408 no yes 29 294,7 95 50,1 237,3 105 20,17 300,3 127 13,51 13,7 6 3,7 1 no

4 NM 99 area_code_415 no no 0 216,8 123 36,86 126,4 88 10,74 220,6 82 9,93 15,7 2 4,24 1 no

5 SC 108 area_code_415 no no 0 197,4 78 33,56 124 101 10,54 204,5 107 9,2 7,7 4 2,08 2 no

6 IA 117 area_code_415 no no 0 226,5 85 38,51 141,6 68 12,04 223 90 10,04 6,9 5 1,86 1 no

7 ND 63 area_code_415 no yes 32 218,9 124 37,21 214,3 125 18,22 260,3 120 11,71 12,9 3 3,48 1 no

8 LA 94 area_code_408 no no 0 157,5 97 26,78 224,5 112 19,08 310,8 106 13,99 11,1 6 3 0 no

9 MO 138 area_code_510 no no 0 89,1 117 15,15 126,8 46 10,78 190,5 71 8,57 9,9 4 2,67 2 no

10 TX 128 area_code_415 no yes 43 177,8 100 30,23 147,3 89 12,52 194,2 92 8,74 11,9 1 3,21 0 no

11 AR 113 area_code_510 no yes 39 209,8 77 35,67 164,1 90 13,95 159,7 100 7,19 9 4 2,43 1 no

12 TX 140 area_code_415 no no 0 93,2 109 15,84 197,6 116 16,8 219,8 94 9,89 10,5 2 2,84 1 no

13 ME 102 area_code_415 no no 0 228,1 86 38,78 156 97 13,26 227,9 124 10,26 10,6 9 2,86 1 no

14 ND 108 area_code_415 no no 0 112,6 86 19,14 114,9 101 9,77 177,8 119 8 7,2 6 1,94 3 no

15 DE 60 area_code_408 no no 0 207,3 77 35,24 207,9 105 17,67 108,2 89 4,87 12,9 5 3,48 1 no

16 MN 96 area_code_408 no no 0 208,1 93 35,38 189,2 107 16,08 279,6 90 12,58 7,4 2 2 1 no

17 KS 178 area_code_415 no yes 22 112,8 66 19,18 232,6 100 19,77 194,8 119 8,77 14,3 3 3,86 1 no

18 MN 75 area_code_415 no no 0 225,3 124 38,3 228 81 19,38 254,3 106 11,44 11,7 3 3,16 1 no

19 NC 106 area_code_415 no yes 25 169,4 105 28,8 240,5 108 20,44 159,4 114 7,17 13,9 5 3,75 4 no

20 HI 158 area_code_510 no no 0 193,3 121 32,86 208,1 97 17,69 228,1 99 10,26 7,1 9 1,92 1 no

21 NV 111 area_code_415 no yes 35 161,2 142 27,4 159,1 104 13,52 167,9 98 7,56 14,7 5 3,97 1 no

22 CO 102 area_code_510 no no 0 95,6 88 16,25 167,6 106 14,25 177,3 95 7,98 9,8 2 2,65 3 no

23 TN 92 area_code_510 no yes 25 79,8 99 13,57 313,6 120 26,66 135,5 104 6,1 9,3 8 2,51 2 no

24 DE 42 area_code_415 no yes 31 170,8 101 29,04 233,4 104 19,84 174,2 121 7,84 11 3 2,97 2 no

25 OH 69 area_code_415 no no 0 229,2 111 38,96 165,3 104 14,05 235,1 80 10,58 5,2 5 1,4 1 no

26 OR 117 area_code_415 no yes 38 259,3 94 44,08 245,6 71 20,88 269,3 125 12,12 9,2 1 2,48 3 no

27 NE 76 area_code_415 no yes 41 212,6 110 36,14 172,7 97 14,68 186,3 78 8,38 10,1 5 2,73 0 no

10

4. Data Dictionary

Both datasets have 20 variables, one of which is the predictor variable, churn. Follows the

Data Dictionary with the structuring of the variables.

Feature Meaning
ID Customer ID

state Abbreviation for each state

account_length Account extension

area_code Area code for each state

international_plan Indicative if the client has an international plan

voice_mail_plan Indicative if the customer has a voice plan

number_vmail_messages Number of voice messages the customer has

total_day_minutes Number of minutes used during the day

total_day_calls Number of calls made during the day

total_day_charge Total cost of calls made during the day

total_eve_minutes Number of minutes used in the afternoon

total_eve_calls Number of calls made during the afternoon

total_eve_charge Total cost of calls made during the afternoon

total_night_minutes Number of minutes used during the night

total_night_calls Number of calls made during the night

total_night_charge Total cost of overnight calls

total_intl_minutes Number of minutes during international calls

total_intl_calls Number of international calls

total_intl_charge Total cost of international calls

number_customer_service_calls Number of calls to Customer Service

churn
This is the predictor variable, the objective of the study,

indicating whether the customer canceled the service or not.
Table 1 – Data Dictionary

11

 As we are working with Pyspark the reading mode is different from the conventional one

provided by Python libraries. In this case, we have to create RDD’s and load the data into them.

 RDD15 stands for Resilient Distributed Datasets and corresponds to a collection of objects

partitioned in the cluster16, distributed, immutable and with Spark structure.

 Using a Spark Context - sc - (object that tells spark how to connect to the cluster) we read

the dataset as follows:

telecomRDD = sc.textFile("projeto4_telecom_treino.csv")

textFile transforms a csv file into an RDD object. At this point, the telecomRDD object

received the data, distributed it in the cluster and became immutable. To acquire any

information, we must perform actions on the RDD’s as:

telecomRDD.take(5)

This action returns the first 5 rows of the dataset:

['"","state","account_length","area_code","international_plan","voice_mail

_plan","number_vmail_messages","total_day_minutes","total_day_calls","tota

l_day_charge","total_eve_minutes","total_eve_calls","total_eve_charge","to

tal_night_minutes","total_night_calls","total_night_charge","total_intl_mi

nutes","total_intl_calls","total_intl_charge","number_customer_service_cal

ls","churn"',

 '"1","KS",128,"area_code_415","no","yes",25,265.1,110,45.07,197.4,99,16.7

8,244.7,91,11.01,10,3,2.7,1,"no"',

 '"2","OH",107,"area_code_415","no","yes",26,161.6,123,27.47,195.5,103,16.

62,254.4,103,11.45,13.7,3,3.7,1,"no"',

 '"3","NJ",137,"area_code_415","no","no",0,243.4,114,41.38,121.2,110,10.3,

162.6,104,7.32,12.2,5,3.29,0,"no"',

 '"4","OH",84,"area_code_408","yes","no",0,299.4,71,50.9,61.9,88,5.26,196.

9,89,8.86,6.6,7,1.78,2,"no"']

Note that each line has its data in single quotes (shown in red in the image above),

indicating that they were recognized as a single string (text). It is necessary to transform this

information so that each data is in its respective column, so, before the exploratory analysis we

will carry out the feature engineering, treating and adding relevant variables.

Even before performing feature engineering, let's understand how PySpark Shell works.

15 https://spark.apache.org/docs/latest/rdd-programming-guide.html
16 Set of interconnected computers that work as if they were one big system.

12

5. PySpark Shell

As stated earlier in the introductory chapter from now on we will analyze the execution

of the Jobs generated in Pyspark Shell. Not all will be presented as there is repetition in the code's

actions, but the most relevant will be highlighted in the documentation of this project. Interesting

fact will be when we enter the chapter of Machine Learning because it will be possible to see the

large amount of Jobs generated sequentially.

The action of the previous chapter (“take”) generated the following job:

Figure 3 - Pyspark Shell I

As illustrated in the figure above, we have two Jobs executed, one from the test I

performed earlier to retrieve from the cluster the number of rows we have in the data (“count”)

and the job with the red arrow (“take”) that retrieves all the data of my telecomRDD.

With the action of Job id 0 it takes us four seconds to recover, and with Job id 1 it takes

us a second, because in the action of the “take” I requested only the first 5 lines, while the action

of the “count” requested everything there is in the cluster.

Note that we have a timeline where it shows in real time the execution of all Jobs. At the

end of the project, we will have a series of operations filling this timeline.

Within each Job we can see the details of its execution:

13

Figure 4 - Pyspark Shell II

In item 1 we can see the specific timeline of that Job within the cluster. Note that because

we are not in a production environment we have only one machine in the cluster, localhost. If we

had a configured cluster, Jobs' data and “tasks” would be distributed among the machines and

we would see the execution on each of them.

In item 2 we have details of the execution time, metrics indicating the time spent in each

quartile of execution, the address of the machine that requested the “task”, how much memory

was used and if the Job was successful or failed.

Item 3 concerns the visualization of the DAG (Direct Acyclic Graph) and refers to the chain

of dependencies and execution of an RDD. In this case we can see that spark executes the concept

of pipeline17 in operations, passing from instruction to instruction until the final result.

In this DAG we have blue and green boxes. The box in item 4 represents an operation that

I wrote in my code, in this case a read operation with the “textfile”. This reading is from an input

file on HDFS18 (Hadoop Distributed File System). The box in item 5 represents the RDD generated

by this reading operation. Each smaller box (items 5, 6, 7) is RDD’s.

Then, in green (item 6) we have the same instruction as item 5, but with the command

"cache" persisting the RDD in memory for faster access later, so that I don't need to access this

data in HDFS.

Finally, in item 7 we have the final RDD with the action “take” returning the result

previously presented.

We move on to the next chapter with Feature Engineering.

17 Data entry is processed and delivered for next processing following a queue.
18 https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html

1
3

2

4
5

6

7

14

6. Feature Engineering
Feature Engineering is the process of treating, adding and removing variables. This

process consists of finding out which columns of data create the most useful attributes to

improve the accuracy of the machine learning model.

 As our model does not read string, I removed the first line with the action "filter", that is,

it filters everything that does not have the determined condition:

telecomRDD2 = telecomRDD.filter(lambda x: "state" not in x)

 Note that I did not attribute the result to the RDD already created (telecomRDD) as we

would have an error message indicating its immutability. This way we have telecomRDD2 to

perform cleaning and transformation.

['"1","KS",128,"area_code_415","no","yes",25,265.1,110,45.07,197.4,99,16.7

8,244.7,91,11.01,10,3,2.7,1,"no"',

 '"2","OH",107,"area_code_415","no","yes",26,161.6,123,27.47,195.5,103,16.

62,254.4,103,11.45,13.7,3,3.7,1,"no"',

 '"3","NJ",137,"area_code_415","no","no",0,243.4,114,41.38,121.2,110,10.3,

162.6,104,7.32,12.2,5,3.29,0,"no"',

 '"4","OH",84,"area_code_408","yes","no",0,299.4,71,50.9,61.9,88,5.26,196.

9,89,8.86,6.6,7,1.78,2,"no"',

 '"5","OK",75,"area_code_415","yes","no",0,166.7,113,28.34,148.3,122,12.61

,186.9,121,8.41,10.1,3,2.73,3,"no"']

 With the data without the header, we perform transformation actions, so I created a

function facilitating the process of manipulating the variables where I initially divide the dataset

using the comma separator (“,”) and later assigning each variable to an object converting to int,

float , str according to its type.

 Still in the function, after the process above, each variable will be inserted in an object

"lines" through the function “Row”19 that will prepare the lines to later create a Pyspark

Dataframe assisting in the use of the "select" function of SparkSql for exploratory analysis.

19 https://spark.apache.org/docs/latest/api/python/pyspark.sql.html#pyspark.sql.Row

15

 # Feature Engineering I - Function

def featengI(data):

 dataList = data.split(",")

 ID = (dataList[0])

 STATE = str(dataList[1])

 ACCLGT = int(dataList[2])

 AREACODE = (dataList[3])

 #PHONENB = (dataList[4]) # Phone_No -> Phone Number (IT IS NOT IN THE test-trai
n DATA)

 #INTPLAN = (dataList[4]) # International_Plan -> "yes" or "no" (Convert yes->1
or no->2)

 INTPLAN = 1.0 if dataList[4] == '"yes"' else 2.0

 #VMPLAN = (dataList[5]) # Voice_Mail_Plan -> "yes" or "no" (Convert yes->1 or

no->2) I THINK THIS FEATURE IS NOT HELPING AND CAN BE ELIMINATED BECAUSE THE NEXT VARIABLE (N

BVMMSG) ONLY HAS VALUES WHEN THIS IS '1', IT'S LIKE DOUBLE INFORMATION ABOUT THE SAME THING

 VMPLAN = 1.0 if dataList[5] == '"yes"' else 2.0

 NBVMMSG = int(dataList[6])

 TTDAYMIN = float(dataList[7])

 TTDAYCALLS = int(dataList[8])

 TTDAYCHARGE = float(dataList[9])

 TTEVEMIN = float(dataList[10])

 TTEVECALLS = int(dataList[11])

 TTEVECHARGE = float(dataList[12])

 TTNGTMIN = float(dataList[13])

 TTNGTCALLS = int(dataList[14])

 TTNGTCHARGE = float(dataList[15])

 TTINTMIN = float(dataList[16])

 TTINTCALLS = int(dataList[17])

 TTINTCHARGE = float(dataList[18])

 NBCSCALLS = int(dataList[19])
 #TARGET = (dataList[20]) # Churn (Target) -> "yes" or "no" (Convert yes->1 or no->2)

 TARGET = 1 if dataList[20] == '"yes"' else 2

 lines = Row(ID = ID, STATE = STATE, ACCLGT = ACCLGT, AREACODE = AREACODE,

 INTPLAN = INTPLAN, VMPLAN = VMPLAN, NBVMMSG = NBVMMSG,

 TTDAYMIN = TTDAYMIN, TTDAYCALLS = TTDAYCALLS, TTDAYCHARGE = TTDAYCHARGE,

 TTEVEMIN = TTEVEMIN, TTEVECALLS = TTEVECALLS, TTEVECHARGE = TTEVECHARGE,

 TTNGTMIN = TTNGTMIN, TTNGTCALLS = TTNGTCALLS, TTNGTCHARGE = TTNGTCHARGE,

 TTINTMIN = TTINTMIN, TTINTCALLS = TTINTCALLS, TTINTCHARGE = TTINTCHARGE,

 NBCSCALLS = NBCSCALLS, TARGET = TARGET)

 return lines

 As previously mentioned, machine learning models do not interpret texts, only numbers,

so the variables INTPLAN, VMPLAN and TARGET were converted into the function where “1”

corresponds to “yes” and “2” to “no” in each one.

 After mapping, we can create a PySpark SQL Dataframe to use a query to obtain data and

analyze it.

telecomDF = spSession.createDataFrame(telecomRDD3)

16

I used telecomDF object to structure the variables (source code at the end of this

document) resulting in the following columns:

|-- ID: integer (nullable = true)

|-- STATE: string (nullable = true)

|-- ACCLGT: long (nullable = true)

|-- INTPLAN: double (nullable = true)

|-- VMPLAN: double (nullable = true)

|-- NBVMMSG: long (nullable = true)

|-- TTDAYMIN: double (nullable = true)

|-- TTDAYCALLS: long (nullable = true)

|-- TTDAYCHARGE: double (nullable = true)

|-- (TTDAYMIN / TTDAYCALLS): double (nullable = true)

|-- TTEVEMIN: double (nullable = true)

|-- TTEVECALLS: long (nullable = true)

|-- TTEVECHARGE: double (nullable = true)

|-- (TTEVEMIN / TTEVECALLS): double (nullable = true)

|-- TTINTMIN: double (nullable = true)

|-- TTINTCALLS: long (nullable = true)

|-- TTINTCHARGE: double (nullable = true)

|-- (TTINTMIN / TTINTCALLS): double (nullable = true)

|-- NBCSCALLS: long (nullable = true)

|-- TARGET: long (nullable = true)

In addition to the added variables, for good practices the name of the predictive variable

churn was replaced by target, as indicated by the red arrow above.

 With the feature engineering completed, we can start the exploratory analysis process.

Figure 5 – Processing Jobs

 Notice on the red arrow in the Pyspark Shell that Jobs running also appear while they are

being processed.

17

7. Exploratory Analysis

Exploratory analysis is essential to understand where we have better variables, where we

have problems, where we have business opportunities, and in this way, we can generate a series

of important conclusions to continue the machine learning process.

To perform exploratory analysis Pyspark SQL functions were initially used, which are

minor modifications in the traditional SQL language. However, as the traditional SQL language is

more widely used, I made a modification in Pyspark Dataframe so that I could use standard SQL

language.

This is a Pyspark SQL statement:

telecomDF4.cube('TARGET').agg(countDistinct('STATE').alias('Exclusive States'),

 grouping('TARGET')).orderBy('TARGET').show()

Resulting in:

+------+----------------+----------------+

|TARGET|Exclusive States|grouping(TARGET)|

+------+----------------+----------------+

| null| 51| 1|

| 1| 51| 0|

| 2| 51| 0|

+------+----------------+----------------+

Table 2 - Spark SQL

For those who have never worked with Spark it is necessary to consult its extensive

documentation20 and search for the necessary commands to perform selections, aggregations,

ordering and organization of data.

Due to the ease of data manipulation with SQL language I created a temporary table

(“telecomTB”) in memory, speeding up data recovery and facilitating the use of SQL commands.

This is the same command used in table 2 but in SQL language:

 spSession.sql("select TARGET, count(distinct STATE) as Exclusive_States

 from telecomTB

 group by TARGET").show()

That returns as a result:

20 https://spark.apache.org/docs/latest/api/python/pyspark.sql.html?highlight=sql#pyspark.sql.DataFrame

18

+------+----------------+

|TARGET|Exclusive_States|

+------+----------------+

| 1| 51|

| 2| 51|

+------+----------------+

Table 3 - SQL ANSII

Both commands return the number of States present in the dataset that have churn 1 and

churn 2, that is, the occurrence of service cancellations or not, respectively. Note that we have

51 states, with cancellations in all of them, but how much does each state occupy within the

cancellations made? We will analyze in detail in the following topics.

Pyspark Shell in this case was processed with more instructions within the cluster:

Figure 6 – Longer Jobs

Figure 6 shows the timeline and the last job executed by Spark, which in this case refers

to the Spark SQL statement. Note that instead of 1 task we have 402 tasks to bring the final result.

As it is a more extensive process, spark took 11 seconds to return the information, which is not

much compared to the amount of data in the operation.

Within the job we can see that the DAG has more stages (stage 12, 13, 14), as shown in

figure 7 below, and that they communicate, that is, the final result of one is the input of another

and so on.

19

Figure 7 – DAG longer jobs

Pyspark shell provides an interactive analysis, that is, if you click on each stage it is

possible to see in detail the execution of each RDD.

Figure 8 - Stage 12

Continued in figure 9.

20

Figure 9 – Continuation Stage 12

Notice in figure 9 that the last instruction in the blue box is “takeOrdered” because what

I wrote in my code was to order the final result in descending order, presenting on screen an

easier way to view the result.

I believe that you have already understood the importance of Pyspark Shell for the Data

Science process, with it I can carry out the execution of the code following how each instruction

requested to the cluster was managed and in the event of a possible error it is faster to find

where there are failures, analyze the problems and solve them to continue the project.

7.1 Global map of the States under study (according to the dataset)

Figure 10 – Global Map

21

As you can see, our dataset is centered on information from the United States, the map

below visually presents all the states involved.

Figure 11 – Local Map

Each circle on the map has a size indicating the volume of data that each State contributed

to this project, that is, the larger the circle the more information collected from that State and

vice versa.

To assemble the map, it is necessary to indicate the latitude and longitude of each State,

information that the dataset provided does not have. So for the construction of the map I

collected latitude and longitude information for each North American state through google maps,

fed a CSV spreadsheet and used join commands in my dataset provided using the acronym of

each state as a key.

Table 4 - Lat-Long by State

With this parameterization it was possible to analyze each region according to the volume

of data and plot the result using a library package Matplotlib21 called Basemap22.

21 https://matplotlib.org/
22 https://matplotlib.org/basemap/

22

Unfortunately this package has been discontinued from the matplotlib library but it is

possible to find the necessary API's on the internet and install manually by changing some

machine variables. To do this, consult the official documentation23 and follow the installation and

configuration guide.

The matplotlib library is versatile and offers a multitude of options for presenting results

graphically, from bar graphs to 3D mapping. During the execution of the project, I mixed the use

of matplotlib with another excellent plot library Seaborn24.

Seaborn is a python data visualization library based on matplotlib and offers high level

graphics, making it possible to make a series of adjustments to the configuration parameters of

the graphics providing more attractive shapes and colors in addition to the easy visual

presentation of results.

As shown on the map of the USA, the highest concentration is in the states located in the

northeast region, confirmed by the following wordcloud:

Figure 12 - WordCloud

The wordcloud indicates the acronyms of the twenty states with the highest

concentration, being:

1º - WV: West Virginia

2º - MN: Minnesota

3º - NY: New York

23 https://matplotlib.org/basemap/
24 https://seaborn.pydata.org/index.html

23

To consolidate I present the 51 States with their respective participation, note that the

last position is occupied by the State of California:

Figure 13 – States Volume

The above amounts do not necessarily indicate dissatisfaction with the services provided

by the telecom company. We have to analyze each case separately and check if the States with

the most records are also the States with the most disapproval (hypothesis 1). Study follows.

7.2 Higher and lower churn rate states

 spSession.sql("select STATE, TARGET as Churn, count(ID) as Number_Of_Attendance \

 from telecomTB \

 group by STATE, Churn \

 order by STATE, Churn")

The SQL command above acquires the data of the States and the churn of each one,

ordering according to the name of the State.

With this information, I performed the churn rate analysis to verify the hypothesis of

item1. Graph below:

24

Figure 14 - Churn Rate by State

Searching for West Virginia (WV) in the chart above it is possible to state that it is not

among the states with the highest Churn Rate, with Texas (TX) and New Jersey (NJ) being the

states with the most cancellations of the telecom company's plans.

The previous hypothesis was refuted through individual analysis, so it is important to

carefully analyze each finding. Drawing hasty conclusions without analyzing the data can lead to

small errors with great impact on the final result.

Returning to the visualization of the global map, we have the following 5 states with the

highest Churn Rate records and then the 5 with the lowest Churn:

Figure 15 - Top 5 States with most Churn

TX

MN
MI

NJ

MD

25

Figure 16 - Top 5 States with less Churn

Working with data means identifying and generating opportunities from hidden but

valuable information.

For this business problem I found a series of opportunities hidden in the data and that

can be used to offer services in the windows that are not being filled by both customers and the

Telecom company and that perhaps both have not identified.

I share in the following items the insights acquired as business opportunities.

7.3 First Business Opportunity - International Plans

Initially, we will look at international plans. Through the command below we can obtain

information regarding States that make international calls and do not have an international plan.

 spSession.sql("select STATE, count(ID) as QT_INTPLAN \

 from telecomTB \

 where INTPLAN == 2 \

 group by STATE \

 order by QT_INTPLAN desc")

AK

AZ

IA

LA

HI

26

+-----+----------+

|STATE|QT_INTPLAN|

+-----+----------+

| WV| 99|

| MN| 76|

| NY| 75|

| AL| 72|

| OR| 71|

| WI| 70|

| OH| 69|

| VA| 68|

| IN| 68|

| ID| 67|

+-----+----------+

Table 5 – International Plans by State

These are the 10 States with most international calls and who do not have international

plans. This is valuable information for the marketing and sales team as it is an opportunity to set

up an action plan to achieve more revenue by offering plans by regions.

It is possible to go further and study individual personalized plans, that is, look at each

consumer, our second business opportunity.

7.4 Second Business Opportunity - Customized International Plans

At this moment we enter specifically into the consumption of each customer.
+--------+----------+

|CUSTOMER|TTINTCALLS|

+--------+----------+

| 23| 19|

| 378| 18|

| 2957| 18|

| 983| 18|

| 3311| 17|

| 1568| 16|

| 2622| 16|

| 675| 15|

| 637| 15|

| 1890| 15|

| 2836| 15|

| 1393| 15|

| 922| 14|

| 2002| 14|

| 1180| 14|

| 3231| 14|

| 1356| 14|

| 757| 14|

| 186| 13|

| 3207| 13|

+--------+----------+

Table 6 – International Plan by Customer

27

In table 6 we have the columns:

• CUSTOMER: Customer ID;

• TTINTCALLS: Total International Calls.

Through the data collected, we can map the use of international calls by consumers and

offer customized individualized plans for each customer. Although it is valuable information for

the sales team, how to put together a marketing plan that can convince consumers that they

need to hire an international plan? The answer is again in the data.

7.5 Third Business Opportunity - International Pricing Plans

So far we have identified the states with the most international calls and without an

adequate plan, soon after we were able to determine which consumer does not have the plan

and frequently calls outside the country, but delivering this information to the customer may not

generate value and therefore may not convert into sale of new plans.

To add value to the marketing plan we have to analyze how the lack of an international

plan is impacting the client financially and how much he could save by hiring an appropriate plan.

Figure 17 - Cost per International Call

28

Through a collection of information such as total calls and taxation it was possible to

assemble the graph in image 17 illustrating how much is being paid by consumers with an

international plan and consumers without an international plan.

In the image, the green line is the amounts paid to the Telecom company for international

calls made by customers with an international plan. The red line indicates the amounts paid for

international calls by those who do not have this plan.

Notice in the graph that the red line is almost always above the green line indicating that

more fees are paid by customers without an international plan. Statistically, through the data,

we can calculate and affirm that:

With this information, we can generate value for the marketing plan because we will have

enough content to prove to the client that he can save money by hiring an international plan.

These are some of the opportunities that can be offered to the customer, but what about

the opportunities that the Telecom company can take advantage of? Are there windows not filled

in by the company? Yes, there is hidden information in the data that can be revealed to the

company's administrators in terms of earned revenue that can transform the way of managing

the business, another opportunity offered by the data.

7.6 Fourth Business Opportunity - Acquisition of Revenue
Calculating the average rate applied in each period of the day we have the following:

Fees applied by the Telecom
company per day period

Day $ 0,170

Evening $ 0,085
Table 7 - Rates Per Minute

Knowing this, we can calculate the financial impact within the total volume of calls made

per period. First let's look at the total volume:

Customers without an international plan are paying 55.82% more fees!

29

Figure 18 - Total minutes used per period

As shown in figure 18, the volume of calls made in the afternoon is higher, which does

not mean that this is the period with the highest revenue as the rate is lower as follows:

Figure 19 - Total revenue per period

30

 For the data collection period we have revenue from:

And if 0.01 cents were changed in each rate, what effect on revenue?

Proposed Fees applied by the
Telecom company per day

period

Dia $ 0,160

Tarde $ 0,105
Table 8 - Proposed Fees

 Adjustment in revenue:

Figure 20 - Total received in USD (proposal 01)

With small rate adjustments we can go from $ 158,801.11 to:

Current Revenue: $ 158,801.11

New Revenue: $ 166,206.55

BEFORE

BEFORE

31

 I understand that possibly the volume of calls in the afternoon is higher because the rate

applied is 50% lower than the rate of the day, an attraction to increase the volume of calls in this

period. So let's think differently: what if instead of changing the rate, marketing plans were made

to encourage consumption during the day? Let's simulate an environment in which the marketing

incentive has generated a 10% increase in consumption.

Figure 21 - Total received in USD (proposal 02)

 With this production environment we would have a revenue of:

Consolidating revenues according to each proposed environment:

Proposed revenues for the Telecom
company

Difference

Original Revenue $ 158.801,110 $ -

Proposed Revenue 01 $ 166.206,550 $ 7.405,440

Proposed Revenue 02 $ 168.987,340 $ 10.186,230
Table 9 - Revenue Differences

KEEPING

AS BEFORE

BEFORE

New Revenue: $ 168,987.34

32

7.7 Fifth Business Opportunity - Customer Service
Let's now look at another source of information, how the customer interacts with the

company's support. This is usually a time when the customer encounters a problem and needs

help, a solution, it is the moment to retain customer loyalty but it is not always possible.

Figure 22 - Number of Customer Service Calls

 The histogram above shows the number of calls that customers make to the Company's

support. Note that we have a higher volume of calls between 1 and 3 calls and soon afterwards it drops

considerably. This chart does not indicate cancellation, only the volume of calls.

 Let's understand after how many calls customers decide to cancel the service.

 The following chart compares two important pieces of information, the number of calls made

to the Customer Service (x-axis) and the choice between canceling or not the service (y-axis).

33

Figure 23 - Churn Index by Customer Service

 Note that dissatisfied consumers cancel the service when they make the first call to the

Customer Service and the tendency is for cancellations to decrease, however, a point of concern is that

indicated in the red circle in figure 23, that is, four calls to the Customer Service because the chart was

indicating a decrease in the churn rate and suddenly a peak accused cancellations.

 Unfortunately we don't have enough information to ascertain the reason, I recommend to

collect different data so that we can properly state the cause of the problem and try to mitigate the

churn rate.

This is only part of the data analysis, an in-depth study can provide many other

opportunities for improvement and identification of business opportunities.

Understanding how data behaves makes us more confident in building the predictive

model, the subject of the next chapter.

During exploratory analysis we work more with SQL statements than with Spark functions,

but we will now enter an important library responsible for machine learning models, Spark

MLlib25.

25 https://spark.apache.org/mllib/

34

8. Building the Machine Learning Model

In this chapter, we will build two different machine learning models in order to analyze

which one we get the most accuracy from and then present new and unknown data and then

evaluate if we have a reliable model

Machine Learning is an area of artificial intelligence that studies learning techniques by

applying programming and computing to build mathematical models with the ability to get

knowledge automatically based on the data provided.

Through this data, the trained algorithm is able to make decisions when new data is

presented to it, thus providing complex problem solving solutions that in many cases would be

difficult for a person to perform.

Within this concept we have 2 types of learning:

• Supervised Learning

In this type of learning, we have a set of input data and possible output data that

should be used to train the model. In other words, by testing this model we can

compare the predicted output data with that provided and evaluate the accuracy

of the trained model. If unsatisfactory, it is possible to go back to the beginning of

model creation and improve the predictor variables to perform new tests.

• Unsupervised Learning

In this other type of learning, we have an input data set but the outputs are

unknown, so I can't compare the predicted data with the expected outputs. For

this learning modality other techniques are applied, for example, the data will be

grouped and the results will change according to the variables.

 Machine Learning can be used to solve a range of problems from internet search

suggestions, spam message tracking, to digital marketing usage.

 For our business problem, Real – Time Customer Churn Prediction in Telecom Companies,

we will use supervised learning, but before we go into creating the predictive model, let's see

how data is balanced.

35

8.1 Data Balancing

During the loading of the variables, I performed an analysis on the data set and obtained

an interesting result: the data distribution of the predictor variable (churn) is totally unbalanced.

This can be a big problem because it generates a biased model prioritizing one variable over

another.

Figure 24 - Amount of Data (%)

We will have no problem creating the predictive model but we will have to observe the

behavior of the machine learning model when presenting new and unknown data. In case of

failure it will be necessary to adjust this balance and retrain the model.

8.2 Correlation and Variables of Importance

Studying the correlation between variables is an important source for understanding a

problem and finding possible solutions. Finding the relevant variables can help improve the

predictive model and bring valuable sources of information to the analysis process.

36

The correlation coefficient varies from -1 to 1 indicating that two variables have a strong

negative or positive correlation, respectively.

With the aid of a "loop for" I ran through my dataset comparing each variable to the Churn

variable using the following command:

for i in telecomDF4.columns:

 # for each one I'll 'select(i)', and use the 'take' action from [0][0] combination as if it was

a matrix

 if not(isinstance(telecomDF4.select(i).take(1)[0][0], str)):

 print("Correlation between Target(Churn) with: ", i, telecomDF4.stat.corr('TARGET', i))

Resulting in:

Correlation between Target(Churn) with: ID -0.0402316843047844

Correlation between Target(Churn) with: ACCLGT -0.016540742243674304

Correlation between Target(Churn) with: INTPLAN 0.25985184734548217

Correlation between Target(Churn) with: VMPLAN -0.10214814067014684

Correlation between Target(Churn) with: NBVMMSG 0.0897279698350642

Correlation between Target(Churn) with: TTDAYMIN -0.2051508292613897

Correlation between Target(Churn) with: TTDAYCALLS -0.01845931160857706

Correlation between Target(Churn) with: TTDAYCHARGE -0.20515074317015394

Correlation between Target(Churn) with: (TTDAYMIN / TTDAYCALLS) -0.152041247

Correlation between Target(Churn) with: TTEVEMIN -0.09279579031259169

Correlation between Target(Churn) with: TTEVECALLS -0.00923313191307793

Correlation between Target(Churn) with: TTEVECHARGE -0.09278603942871404

Correlation between Target(Churn) with: (TTEVEMIN / TTEVECALLS) -0.050302182

Correlation between Target(Churn) with: TTINTMIN -0.06823877562717734

Correlation between Target(Churn) with: TTINTCALLS 0.05284433577413784

Correlation between Target(Churn) with: TTINTCHARGE -0.06825863150391472

Correlation between Target(Churn) with: (TTINTMIN / TTINTCALLS) -0.085472967

Correlation between Target(Churn) with: NBCSCALLS -0.20874999878379397

Correlation between Target(Churn) with: TARGET 1.0

Table 10 – Correlation and Variables of Importance

The most important variables are:

• INTPLAN: Indicative if the client has an international plan

• NBVMMSG: Number of voice messages the customer has

• TTDAYMIN: Number of minutes used during the day

• TTDAYCHARGE: Total cost of calls made during the day

• (TTDAYMIN / TTDAYCALLS): Minutes per call

• TTEVEMIN: Number of minutes used in the afternoon

• TTEVECHARGE: Total cost of calls made during the afternoon

• NBCSCALLS: Number of calls to Customer Service

These correlation operations generated 39 different jobs for the cluster, each costing an

average of 2 seconds to be processed, a job from the “take” action where we acquire the data

for delivery to the second “corr” job that makes the correlation between the variables. Everything

spelled out in Pyspark Shell.

37

8.3 Pré – Processing of the Dataset

To load these most important variables into the machine learning model, it is necessary

to first understand an important concept of data delivery to Spark MLlib (MLlib is the

abbreviation for Machine Learning Library), the concept of Dense Vector and Sparse Vector.

The need for some algorithms (mainly regression) for apache spark machine learning is

that the data must be in a specific format to be able to train the algorithm.

For that, I need to pass the data in vector format, specifically using a dense or sparse

vector, as shown in the image below, because Apache spark works with a cluster and then it will

distribute the data between the machines.

Dense
Vector:

9 4 0 0 0 2 0 0 9

Sparse
Vector:

size: 9

indices: 0 1 5 8

values: 9 4 2 9
Table 11 – Dense Vector x Sparse Vector

Conceptually they are the same object, just a vector. However sparse vectors are vectors

that have many values like zero. While a dense vector is when most of the values in the vector

are nonzero.

To build the vector I need to import the following library:

from pyspark.ml.linalg import Vectors

With the function "Vectors" I created the following function using the importance

variables previously selected and the dense vector:

def transformFeatures(row):

 obj = (row['TARGET'], Vectors.dense(row['INTPLAN'], row['NBVMMSG'], row['TTDAY

MIN'], row['TTDAYCHARGE'], row['(TTDAYMIN / TTDAYCALLS)'], row['TTEVEMIN'],

row['TTEVECHARGE'], row['NBCSCALLS']))

 return obj

Resulting in the following structure, the first column being the Target value:

[(2, DenseVector([2.0, 25.0, 265.1, 45.07, 2.41, 197.4, 16.78, 1.0])),

 (2, DenseVector([2.0, 26.0, 161.6, 27.47, 1.3138, 195.5, 16.62, 1.0])),

 (2, DenseVector([2.0, 0.0, 243.4, 41.38, 2.1351, 121.2, 10.3, 0.0])),

 (2, DenseVector([1.0, 0.0, 299.4, 50.9, 4.2169, 61.9, 5.26, 2.0])),

 (2, DenseVector([1.0, 0.0, 166.7, 28.34, 1.4752, 148.3, 12.61, 3.0]))]

38

Best viewed in table format:

+-------+---------------------+

|TARGET | FEATURES|

+-------+---------------------+

| 2 | [2.0,25.0,265.1,4...|

| 2 | [2.0,26.0,161.6,2...|

| 2 | [2.0,0.0,243.4,41...|

| 2 | [1.0,0.0,299.4,50...|

| 2 | [1.0,0.0,166.7,28...|

| 2 | [1.0,0.0,223.4,37...|

| 2 | [2.0,24.0,218.2,3...|

| 2 | [1.0,0.0,157.0,26...|

| 2 | [2.0,0.0,184.5,31...|

| 2 | [1.0,37.0,258.6,4...|

+-------+---------------------+

Table 12 - Target x Features

Now we are ready for Spark Machine Learning processes.

8.4 Machine Learning

8.5 Train/Test Split

Although the data is ready for delivery to the machine learning model, I will separate the

dataset into training and test data following the proportion of 70% and 30% respectively.

Initially I will use the training data so that the model performs its mathematical

transformation by learning patterns and delivering a final model, after this process I analyze with

the test data if it has acceptable accuracy. Remembering that the test data is different and

unknown to the model.

+------+----------+

|TARGET|Qt of Data|

+------+----------+

| null| 2358|

| 1| 348|

| 2| 2010|

+------+----------+

+------+----------+

|TARGET|Qt of Data|

+------+----------+

| null| 975|

| 1| 135|

| 2| 840|

+------+----------+

Table 13 - train x test

39

8.6 Chosen Machine Learning Models

Two classification models were chosen for training and evaluation:

• DecisionTreeClassifier;

• RandomForestClassifier.

Let's study how these machine learning models work.

8.6.1 DecisionTreeClassifier X RandomForestClassifier

With the selected variables we can train the predictive model, but a key point is to try to

identify when the model enters the underfitting zone, when it encounters the smallest error

(ideal value) and when it arrives in the overfitting zone. However, first let's understand some

concepts about Decision Tree and randomForest.

The machine learning model chosen for our classification problem will be defined by the

best accuracy provided by the model after presented test data. As the name suggests,

randomForest means Random Forest, which in Data Science we can make analogy to Decision

Trees where each tree has a depth and decides between its 'leaves' which is the best path to

travel.

Imagine an inverted tree:

Figure 25 - DecisionTree

40

End nodes (or leaves) are at the bottom of the decision tree. This means that the decision

trees are drawn upside down. Thus, the leaves are the bottom and the roots are the tops (figure

above).

A Decision Tree works with both categorical and continuous variables and works by

dividing the population (or sample) into subpopulations (two or more sets) based on the most

significant divisors of the input variables. For this and many other reasons, decision trees are

used in classification and regression problems where the supervised learning algorithm has a

predefined target variable.

8.6.2 RandomForest Predictive Model x Underfitting x Overfitting

In randomForest, or Random Forest, we grow multiple trees instead of a single tree. But

how does the classification process work? Initially for classifying a new attribute-based object, a

tree generates a classification for that object (which is as if the tree gives votes for this class).

This process goes on for each tree in the forest and finally, the forest chooses the classification

with the most votes (from all trees in the forest). In case of regression, the average of the exits

by different trees is considered.

To illustrate the process performed by randomForest, follow figure below:

Figure 26 - RandomForest

Tree1 Tree 2 Tree n

s1

s2

sn

• In Classification -> Votes

• In Regression -> Average

•

 s

41

As shown in figure 26, we can have n trees and each tree can have as many leaves as it

wants. This is where we have a problem, because a shallow tree that has been trained to classify

an object may not be accurate because it has learned little, or in other words underfitting. At the

other extreme we have overfitting, that is, if no limit is set the model will give 100% accuracy in

the training set because it ends up making a leaf for each observation.

I imagine the question now would be, “But isn't offering 100% accuracy good? " The

answer is yes and no, because it is good to have accuracy, but here the accuracy is only in the

training data and my goal is to generate an unbiased machine learning model where any data can

be predicted. In case of overfitting when I present new data (which is the test data) the model

will fail and return poor accuracy.

The following image illustrates the problem:

Figure 27 - Underfitting x Overfitting

Average Error

Tree Depth

Validation

Train

Underfitting Overfitting Target

42

In figure 27 we have 3 lines with different colors and each one represents important

information:

• Blue Line: represents the average error that training data gives according to tree

depth. The deeper the tree, the smaller the error as the training data was learned

almost entirely.

• Red Line: represents the error in the test data (validation). Note that the error starts

high, decreases, and then increases again. This is one of the key challenges faced when

modeling decision trees, finding the optimal point where the error is as small as

possible.

• Green Line: As you can see, the green line crosses at the ideal point, where the error

in the test data (validation) is as little as possible, giving the model better accuracy.

 Consolidating in the following figure the goal in performing predictive modeling

controlling underfitting and overfitting:

Figure 28 - Underfitting x Ideal x Overfitting

As shown above, what we want is that the model has an ideal curve avoiding poor

accuracy, but also does not memorize 100% of the training data failing with new and unknown

data.

Underfitting Desired Overfitting

Train Data
Predictive

Model

43

8.7 Predictive model (DecisionTree) and the business problem

Back to the business problem of this project, so that the model presented does not suffer

from underfitting or overfitting, a loop was created to train the different depths of the tree.

The line of code below will carry out the complete training, create the model, carry out

the forecast and finally return the precision at each depth. This process will be repeated n times,

where n indicates the depth range of the tree (1 - 15).

Follow code:

Avoiding Underfitting and Overfitting in Decision Trees

for depth in range(1,15):

 model_v1 = DecisionTreeClassifier(maxDepth=depth, labelCol= 'TARGET', features

Col= 'FEATURES')

 model_v1_train = model_v1.fit(train_data)

 model_v1_prediction = model_v1_train.transform(test_data)

 evaluator = MulticlassClassificationEvaluator(predictionCol= 'prediction',

 labelCol = 'TARGET',

 metricName = 'accuracy')

 acc = evaluator.evaluate(model_v1_prediction)

 print('In Depth %.0f this model is %.2f%% Accurate.' %(depth, acc*100))

Resulting in:
In Depth 1 this model is 86.97% Accurate.

In Depth 2 this model is 88.21% Accurate.

In Depth 3 this model is 90.46% Accurate.

In Depth 4 this model is 89.74% Accurate.

In Depth 5 this model is 91.49% Accurate.

In Depth 6 this model is 92.10% Accurate.

In Depth 7 this model is 90.67% Accurate.

In Depth 8 this model is 90.77% Accurate.

In Depth 9 this model is 89.85% Accurate.

In Depth 10 this model is 89.13% Accurate.

In Depth 11 this model is 88.92% Accurate.

In Depth 12 this model is 88.92% Accurate.

In Depth 13 this model is 88.82% Accurate.

In Depth 14 this model is 87.90% Accurate.

According to the model's response, depth equal to 6 offers better accuracy and avoids

underfitting and overfitting.

We will use this depth to continue carrying out the forecasts and evaluation.

Model 01 (DecisionTree) -> Precision of 92.10%

44

8.7.1 Forecasting and Evaluating

With the model parameterized to offer the best accuracy, I presented unknown data to

predict whether a customer is likely to cancel the service or not. Here is a part of this prediction

made by the machine learning model:
[Row(prediction=2.0, TARGET=1),

 Row(prediction=1.0, TARGET=1),

 Row(prediction=2.0, TARGET=1),

 Row(prediction=1.0, TARGET=1),

 Row(prediction=2.0, TARGET=1),

 Row(prediction=2.0, TARGET=1),

 Row(prediction=2.0, TARGET=1),

 Row(prediction=1.0, TARGET=1),

 Row(prediction=2.0, TARGET=2),

 Row(prediction=2.0, TARGET=2),

 Row(prediction=2.0, TARGET=2),

 Row(prediction=2.0, TARGET=2),

 Row(prediction=2.0, TARGET=2),

 Row(prediction=1.0, TARGET=2)]

Note that at times the model should predict "1" and predicted "2" indicating that the

customer would not cancel the service when in fact he would. Let's build a Confusion Matrix and

analyze all predictions.

In this case, Pyspark Shell presented more than 190 operations that were very fast in

execution, lasting around 50 ms each. Here we can see how advantageous it is to bring spark to

a big data project, as it performed machine learning processes in less than a second, that is, it

created the model, delivered the trained model, performed tests with new data and presented

the evaluation metric so that neither underfitting nor overfitting occurs. All in a few milliseconds

of execution on all data in the cluster.

Figure 29 - DecisionTree Job

In figure 29 we can see that the last action of this job is the mapping in the machine

learning model DecisionTree. The job was started and then ended 9 milliseconds later.

45

8.7.2 Confusion Matrix

Confusion Matrix is one of many performance gauges for evaluating data predicted by a

machine learning model. We already know that the accuracy is close to 92% but what about the

data that was not classified correctly? A Confusion Matrix can tell us what happened to all

classified data, following image for a better understanding of its operation:

 1
(Predicted Data)

2
(Predicted Data)

1
(Original Data) TruePositive FalseNegative

2
(Original Data) FalsePositive TrueNegative

Figure 30 - Confusion Matrix Concept

Let's interpret what the Confusion Matrix is telling us:

• TruePositive(TP): It means that my model predicted from the data provided that

the class would be 1 and it really is correct, it was supposed to be 1.

• FalseNegative(FN): It means that my model predicted from the data provided that

the class would be 2 but was supposed to be 1.

• FalsePositive(FP): It means that my model predicted from the data provided that

the class would be 1 but also missed because it was supposed to be 2.

• TrueNegative(TN): It means that my model predicted from the data provided that

the class would be 2 and this time it was right because it was supposed to be 2.

Our goal is to predict and succeed so we seek to maximize the values present in TP and

TN, and on the other hand mitigate values of FN and FP.

Our machine learning model returned the following results:

46

Figure 31 - Confusion Matrix I

Great results because TP and TN are the highest values among all the predicted data. It is

worth mentioning that TN is much larger than the whole set foreseen, as explained at the

beginning of chapter 7, we have unbalanced and prone to “No Churn” data. Later in this project

we will see the reflection of having balanced data.

8.8 Predictive model (RandomForest) and the business problem

Using the same concept and processes as the previous model, that is, complete training,

create the model, perform the forecast and finally return the precision we obtain:

8.8.1 Forecasting and Evaluating
[Row(prediction=1.0, TARGET=1),

 Row(prediction=1.0, TARGET=1),

 Row(prediction=1.0, TARGET=1),

 Row(prediction=2.0, TARGET=1),

 Row(prediction=2.0, TARGET=2),

 Row(prediction=2.0, TARGET=2),

 Row(prediction=2.0, TARGET=2)]

Modelo 02 (RandomForest) -> Precisão de 90.56%

47

8.8.2 Confusion Matrix

Figure 32 - Confusion Matrix II

Based on the results of the two models, we can choose the one that presented the best

performance. The first model had better accuracy and delivered better True Positive and True

Negative, while the second was better with True Negative but unfortunately it was precarious

with False Negative surpassing even True Positive.

Our choice would be the first model, the Decision Tree mode.

As from now on the tasks will be repeated only by changing concepts and testing

hypotheses, Spark Jobs will be the same too so I will not load this project with more information

from Pyspark Shell. If you want to track each execution of the Jobs enter the address of the

localhost cluster and view the processing details. I will return with Pyspark Shell at the end of the

project presenting the consolidated results.

48

9. Optimizing the Result
In a production environment, that is, a real environment, to present a better result we

could find ways to reduce the False Negative since it is a result where the customer is prone to

cancel the service but our predictive model delivered that it is not a potential customer who is

going to cancel. In other words, it predicted "No Churn" when it was "Churn".

Considering this problem, we will see the effect of having balanced data in a simulated

environment with approximately 50% “Churn” and 50% “No Churn”, a machine learning model

will be created, testing this model, assessing accuracy, presenting new data and finally plotting

the confusion matrix evaluating the hypothesis that balanced data offers a better machine

learning model.

9.1 New Data Balancing
Considering a real environment I recommend to acquire balanced data to avoid bias when

creating the machine learning model, however it is not always possible to have balanced data.

So far we have:

• 85.5% of “No Churn” data;

• 14.5% of “Churn” data.

For the simulated environment I recovered the data and separated 50/50 according to

the pie chart below:

Figure 33 - Data Balancing

As the processes are the same in the following chapters, I will focus on the results.

49

9.2 Machine Learning

With the chosen machine learning model, DecisionTreeClassifier, I presented new

balanced data to train and generate the best accuracy without underfitting or overfitting:

In Depth 1 this model is 62.45% Accurate.

In Depth 2 this model is 76.17% Accurate.

In Depth 3 this model is 81.59% Accurate.

In Depth 4 this model is 83.39% Accurate.

In Depth 5 this model is 84.84% Accurate.

In Depth 6 this model is 83.03% Accurate.

In Depth 7 this model is 80.51% Accurate.

In Depth 8 this model is 80.87% Accurate.

In Depth 9 this model is 81.23% Accurate.

In Depth 10 this model is 80.87% Accurate.

In Depth 11 this model is 80.87% Accurate.

In Depth 12 this model is 79.78% Accurate.

In Depth 13 this model is 79.06% Accurate.

In Depth 14 this model is 79.42% Accurate.

Unlike the environment with unbalanced data, here the overall accuracy is lower:

Despite this, we will continue and present new data aiming to reduce the False Negative.

9.3 New and Unknown Data

We have not yet used dataset 2.2 presented in chapter 2, data for testing. This dataset

has the following balance:

• 86.6% of “No Churn” data;

• 13.4% of “Churn” data.

Note that unbalanced data will be presented for the model to forecast, but the model

was trained in balanced data which generates an advantage in the forecast because the model

knows more about “Churn” and “No Churn” and not just one of the variables.

Therefore, using the dataset presented in chapter 2, data for testing, I fed the balanced

model and obtained general accuracy of:

Balanced Model -> Accuracy of 84.84%

Balanced Model -> Accuracy of 87.28%

50

9.4 Confusion Matrix

Figure 34 - Confusion Matrix III

This is our final result. Despite a lower overall accuracy, we managed to mitigate the

incidence of False Negative by dropping to 2.70%.

It is worth noting that False Positive has also increased, but it is not identified as a problem

since they are customers with no propensity to cancel but identified as possible cancellations.

These customers will be contacted by the Telecom team to make them even more loyal.

Also note that the accuracy of True Positive increased to more than 10%, that is, only 45

out of 224 unknown values were wrong.

In this way, the hypothesis that balanced data are more viable for predictions is proven

in practice because the machine learning model will be trained without partiality. In a real

environment, considering balance can bring more reliability to the action process of the teams

involved.

51

Figure 35 - PySpark Shell Final

Figure 35 illustrates the end of Jobs running on Spark. Note that 709 Jobs were generated

and the total time to run the entire script is 15 minutes.

On a production scale, that is, in a real environment this time would certainly decrease

because:

1. Not all the script would be executed as it is at the moment because only the

chosen predictive model would be used;

2. Balancing data would already be acquired in the initial collection, even before

entering the script, in other words, the ETL process (Extract - Transform - Load)

could feed a datalake with the standards defined in the project;

3. Third and most importantly, we would have an entire cluster with more machines

at our disposal for distributed data storage with HDFS and consequently

distributed processing with spark increasing our computational capacity.

52

10. Final Considerations

The use of Spark in this project was essential for the distributed processing of large

amount of data. It was possible to identify that the agility and flexibility in data manipulation with

Spark SQL, Spark MLlib, Pyspark libraries, among others presented, brings a competitive

advantage to the project of Real – Time Customer Churn Prediction in Telecom Companies.

With Pyspark Shell we observed several Jobs in operation, another advantage for the Data

Science process because with it, if a possible error in the execution of the code occurs, we can

find more quickly what the failure was and the causes of the problem, in addition to following

each instruction in detail.

Fundamental concepts were also presented in the data science process, such as feature

engineering, cleaning and transforming data, generating better opportunities for machine

learning models; exploratory analysis delivering a little more value with the information implicit

in the data; identification of the most relevant variables for the predictive model; building the

model and assessing its accuracy.

In the exploratory analysis phase, we observed a series of business opportunities, all

generated from the information contained in the data. A set of unordered numbers does not

indicate much, but a set of structured data generates content and consequently value for the

company.

The statistical analysis of the data balance brought an interesting question: do balanced

data generate better results or not? Nothing better than using the data to prove this hypothesis

in practice.

Initially, unbalanced data were used to train and test the machine learning model, where

we obtained excellent accuracy, 92.10%. With the same unbalanced data, we trained and tested

another model reaching an accuracy of 90.56%. These are great results, but the Confusion Matrix

brought a worrying fact: False Negative portion has a considerably high value for this business

problem.

Knowing this and in order to test our balanced data hypothesis, we entered a simulated

environment where 50% of the data was “Churn” and 50% of the data was “No Churn”. Again,

we created the predictive model, trained, tested and obtained an accuracy of 87.28%. It is not a

better general accuracy than with unbalanced data, however, by analyzing the accuracy

individually through the Confusion Matrix we can see that we mitigate the False Negative,

dropping to 2.70% error. In a real environment we would have to analyze the best way to select

the best model together with decision makers as they are responsible for leading teams and

generating results for the company.

To further improve this result, it would be possible to focus more intensively on improving

the model parameters, or also add new variables at the time of feature engineering, or even

collect more data focusing on the analyzed resources to train the model.

53

Source code

*** Attention: ***

Use Java JDK 11 and Apache Spark 2.4.2

If an error message "name 'sc' is not defined" appears, stop pyspark and delete the folder

metastore_db at the same folder where Jupyter notebook is set.

Access http://localhost:4040 whenever you want to follow the jobs excecution

Predicting Customer Churn in Operations from Telecom -----

Directory --

SET WORKING DIRECTORY

#"C:/FCD/BigDataRealTimeAnalyticPythonSpark/Cap12/Telecom"

Kaggle --

https://www.kaggle.com/c/churn-analytics-bda/overview

Data Description --

- train.csv - the training set

- test.csv - the test set

Evaluation --

#The evaluation is based on misclassification error matrix

#The file should contain a header and have the following format:

Id,Churn

1,True

2,False

3,True

4,False

etc.

Data Dictionary --

1.State -> North American Abbreviated States (HI - Hawaii / MT - Montana / OH - Ohio)

2.Account_Length ->

3.Area_Code -> Phone Number Area Code

?.Phone_No -> Phone Number (IT IS NOT IN THE test NOR IN THE train DATA)

4.International_Plan -> "yes" or "no"

5.Voice_Mail_Plan -> "yes" or "no"

6.No_Vmail_Messages -> Number of Voice Mail Messages

7.Total_Day_minutes ->

8.Total_Day_Calls ->

54

9.Total_Day_charge ->

10.Total_Eve_Minutes ->

11.Total_Eve_Calls ->

12.Total_Eve_Charge ->

13.Total_Night_Minutes ->

14.Total_Night_Calls ->

15.Total_Night_Charge ->

16.Total_Intl_Minutes ->

17.Total_Intl_Calls ->

18.Total_Intl_Charge ->

19.No_CS_Calls -> Number_Customer_Service_Calls

20.Churn -> Target ("yes" or "no")

Note that most information are encoded.

Important Libraries

Imports - Libraries --

IMPORTING NECESSARY LIBRARIES

from pyspark.sql import SparkSession

from pyspark.sql import SQLContext

from pyspark.sql import Row

from pyspark.sql.types import *

Creating a Spark Session to work with Dataframes

Spark Session - used to work with Dataframes on Spark

spSession = SparkSession.builder.master("local").appName("Fellipe-Silva-DS").getOrCreate()

Loading Data

Datasets --

Loading data and getting an RDD

textFile CREATES AN RDD

telecomRDD = sc.textFile("projeto4_telecom_treino.csv")

Optimizing performance using cache on RDD

telecomRDD.cache()

Making an Action

telecomRDD.count()

Making another Action

telecomRDD.take(5)

Note that the data is between simple aspects '' (each line), indicating they are strings, so I'll convert it

further using a function I'll create

55

Feature Engineering

Cleaning data - Removing first line

telecomRDD2 = telecomRDD.filter(lambda x: "state" not in x)

telecomRDD2.count()

Looking Again at my data

telecomRDD2.take(5)

Looking to ALL data and trying to figure out if there is missing values (?, NaN, "", ...)

telecomRDD2.collect()

No Missing Values

Preparing Data to Dataframe

Feature Engineering I - Function

def featengI(data):

 # Dividing data into columns, separating by "," character

 dataList = data.split(",")

 ID = (dataList[0]) # ID

 STATE = str(dataList[1]) # State -> North American Abbreviated States (HI - Hawaii / MT -

Montana / OH - Ohio)

 ACCLGT = int(dataList[2]) # Account_Length

 AREACODE = (dataList[3]) # Phone Number Area Code

 #PHONENB = (dataList[4]) # Phone_No -> Phone Number (IT IS NOT IN THE test-train DATA)

 #INTPLAN = (dataList[4]) # International_Plan -> "yes" or "no" (Convert yes->1 or no->2)

 INTPLAN = 1.0 if dataList[4] == '"yes"' else 2.0

 #VMPLAN = (dataList[5]) # Voice_Mail_Plan -> "yes" or "no" (Convert yes->1 or no->2) I THINK

THIS FEATURE IS NOT HELPING AND CAN BE ELIMINATED BECAUSE THE NEXT VARIABLE (NBVMMSG)

ONLY HAS VALUES WHEN THIS IS '1', IT'S LIKE DOUBLE INFORMATION ABOUT THE SAME THING

 VMPLAN = 1.0 if dataList[5] == '"yes"' else 2.0

 NBVMMSG = int(dataList[6]) # Number_Voice_Mail_Messages

 TTDAYMIN = float(dataList[7]) # Total_Day_minutes

 TTDAYCALLS = int(dataList[8]) # Total_Day_Calls

 TTDAYCHARGE = float(dataList[9]) # Total_Day_Charge

 TTEVEMIN = float(dataList[10]) # Total_Eve_Minutes

 TTEVECALLS = int(dataList[11]) # Total_Eve_Calls

 TTEVECHARGE = float(dataList[12]) # Total_Eve_Charge

 TTNGTMIN = float(dataList[13]) # Total_Night_Minutes

 TTNGTCALLS = int(dataList[14]) # Total_Night_Calls

 TTNGTCHARGE = float(dataList[15]) # Total_Night_Charge

 TTINTMIN = float(dataList[16]) # Total_Intl_Minutes

 TTINTCALLS = int(dataList[17]) # Total_Intl_Calls

56

 TTINTCHARGE = float(dataList[18]) # Total_Intl_Charge

 NBCSCALLS = int(dataList[19]) # Number_Customer_Service_Calls

 #TARGET = (dataList[20]) # Churn (Target) -> "yes" or "no" (Convert yes->1 or no->2)

 TARGET = 1 if dataList[20] == '"yes"' else 2

 # Creating 'lines' using the 'Row' function, preparing to the dataframe analysis, cleaning and

converting the data from string to float

 lines = Row(ID = ID, STATE = STATE, ACCLGT = ACCLGT, AREACODE = AREACODE,

 INTPLAN = INTPLAN, VMPLAN = VMPLAN, NBVMMSG = NBVMMSG,

 TTDAYMIN = TTDAYMIN, TTDAYCALLS = TTDAYCALLS, TTDAYCHARGE = TTDAYCHARGE,

 TTEVEMIN = TTEVEMIN, TTEVECALLS = TTEVECALLS, TTEVECHARGE = TTEVECHARGE,

 TTNGTMIN = TTNGTMIN, TTNGTCALLS = TTNGTCALLS, TTNGTCHARGE = TTNGTCHARGE,

 TTINTMIN = TTINTMIN, TTINTCALLS = TTINTCALLS, TTINTCHARGE = TTINTCHARGE,

 NBCSCALLS = NBCSCALLS, TARGET = TARGET)

 return lines

Applying function above to RDD without headers

telecomRDD3 = telecomRDD2.map(featengI)

Looking at the result

telecomRDD3.cache

telecomRDD3.take(1)

Some data are still in String format, I'll convert to Integer or Float as needed

Creating a Pyspark Dataframe

Creating a Dataframe SO I'M ABLE TO USE THE select FUNCTION FROM SparkSQL

telecomDF = spSession.createDataFrame(telecomRDD3)

type(telecomDF)

Printing telecomDF Object Type and each Row Type

print(telecomDF)

As noted SOME data (ID, STATE) are in String format, I'll convert to Integer or Float as needed

telecomDF.printSchema()

telecomDF.show(5)

Removing Double Quotes in Strings

Function to Remove DoubleQuote (DQ) so I'll transform from String to Integer

def removingDQ(stringData):

 return stringData.replace('"', "")

Using udf -> User Defined Function (Turning Python Functions into PySpark Functions)

57

Look at this -> https://changhsinlee.com/pyspark-udf/

from pyspark.sql.functions import udf

udf_removingDQ = udf(removingDQ, StringType())

telecomDF2 = telecomDF.withColumn('ID', udf_removingDQ(telecomDF['ID'])).withColumn('STATE',

udf_removingDQ(telecomDF['STATE']))

telecomDF2.show(30)

Now that necessary data doesn't have DQ I'm able to perform casting to transform from one type to

another

As follows there are 2 ways to make this transformation

Transforming Features (Two Possibilities)
First

01 - First Possibility

Listing all possible types

from pyspark.sql import types

for tp in ['BinaryType', 'BooleanType', 'ByteType', 'DateType',

 'DecimalType', 'DoubleType', 'FloatType', 'IntegerType',

 'LongType', 'ShortType', 'StringType', 'TimestampType']:

 print(f"{tp}: {getattr(types, tp)().simpleString()}")

Now casting to IntegerType

from pyspark.sql.functions import col , column

telecomDF3 = telecomDF2.withColumn("ID", col("ID").cast("int"))

The First "ID" refers to the column I'm picking in the telecomDF2

The Second 'ID' in col("ID") refers to the column I'm picking in the telecomDF2 to cast

cast("int") is the type transformation I want

telecomDF3.select("ID").show()

print(telecomDF3)

telecomDF3.printSchema()

Transformation Done!

Second

02 - Second Possibility

telecomDF3 = telecomDF2.select(telecomDF2["ID"],

 telecomDF2["ID"].cast(IntegerType()).alias("HI"))

telecomDF3.show()

First I choose the column in telecomDF2 that I want to cast (telecomDF2["ID"])

Second I transform to the type I want (cast(IntegerType()))

Third I'm able to rename this column (alias("HI")). Further I chose to use the same names.

58

print(telecomDF3)

telecomDF3.printSchema()

Transformation Done!

My Choice

I'll choose the second one and add some features based in others

telecomDF4 = telecomDF2.select(telecomDF2['ID'].cast(IntegerType()).alias('ID'),

 telecomDF2['STATE'],

 telecomDF2['ACCLGT'],

 telecomDF2['INTPLAN'],

 telecomDF2['VMPLAN'],

 telecomDF2['NBVMMSG'],

 telecomDF2['TTDAYMIN'],

 telecomDF2['TTDAYCALLS'],

 telecomDF2['TTDAYCHARGE'],

 telecomDF2['TTDAYMIN']/telecomDF2['TTDAYCALLS'],

 telecomDF2['TTEVEMIN'],

 telecomDF2['TTEVECALLS'],

 telecomDF2['TTEVECHARGE'],

 telecomDF2['TTEVEMIN']/telecomDF2['TTEVECALLS'],

 telecomDF2['TTINTMIN'],

 telecomDF2['TTINTCALLS'],

 telecomDF2['TTINTCHARGE'],

 telecomDF2['TTINTMIN']/telecomDF2['TTINTCALLS'],

 telecomDF2['NBCSCALLS'],

 telecomDF2['TARGET']

)

telecomDF4.show(3)

telecomDF4.printSchema()

Exploratory Analysis

Exploratory Analysis

Here I'll compare in some cases both Pyspark SQL Functions and SQL Functions

01.Pyspark SQL Functions -> https://spark.apache.org/docs/2.1.0/api/python/pyspark.sql.html

02.SQL Functions -> http://www-

db.deis.unibo.it/courses/TW/DOCS/w3schools/sql/sql_func_count.asp.html

Attention: standard queries SQL ANSI just work on JAVA 8

!java -version

States with more Data

59

STATES WITH MORE DATA

01.Pyspark SQL Functions

from pyspark.sql.functions import *

telecomDF4.cube('TARGET').agg(countDistinct('STATE').alias('Exclusive States'),

 grouping('TARGET')).orderBy('TARGET').show()

02.SQL Functions

Registering the dataframe as a Temp Table (so i'll be able to use queries SQL ANSI)

HERE I'M CREATING A REAL TABLE, IT WILL EXIST IN MEMORY, NOT ONLY THE DATAFRAME

telecomDF4.createOrReplaceTempView("telecomTB")

ATTENTIOOOOON -> THIS INSTRUCTION ONLY WORKS WITH JAVA 8, AND NOT WITH JAVA 11

Running queries SQL ANSI

spSession.sql("select TARGET, count(distinct STATE) as Exclusive_States from telecomTB group by

TARGET").show()

Attendance per State

Attendance per State

02.SQL Functions

pysparkSqlDF = spSession.sql("select STATE, count(ID) as Number_Of_Attendance \

 from telecomTB \

 group by STATE \

 order by Number_Of_Attendance DESC")

pysparkSqlDF.show()

Transforming to Pandas so I'll plot some analysis using Seaborn

pandasDF = pysparkSqlDF.toPandas()

pandasDF.head(6)

What is the difference?

print(type(pysparkSqlDF))

print(type(pandasDF))

Both are DataFrames but 'pandasDF' enables me to perform Pandas Functions

Plotting some analysis using Seaborn Library

import seaborn as sns

import matplotlib.pyplot as plt

%matplotlib inline

Setting width and height of the plot-figure

60

plt.figure(figsize=(18,10))

Barplot showing amount of States being analyzed

sns.barplot(x=pandasDF['STATE'], y=pandasDF.Number_Of_Attendance, palette='YlGnBu_r')

plt.title("Most States")

Trying to plot maps

https://pythonprogramming.net/basemap-python-plotting-tutorial-part-5/

As observed in the plot above:

Most Attendance: WV->West Virginia

Less Attendance:CA->Califonia

#!pip install wordcloud

from wordcloud import WordCloud

text = pandasDF['STATE']

wc = WordCloud(width=500, height=500, max_font_size=500, min_font_size=50, max_words=20,

background_color='#ffffff', colormap='winter').generate(text.to_string())

plt.imshow(wc, interpolation='bilinear')

plt.axis('off')

plt.margins(x=0, y=0)

plt.show()

Global Map of Attendance per State

Necessary ALL the time to work with basemap package

import os

On Office PC

#os.environ['PROJ_LIB'] = 'C:/Users/fellipe.silva/AppData/Local/Continuum/anaconda3/Lib/site-

packages/mpl_toolkits/basemap/data'

On Home PC

os.environ['PROJ_LIB'] = 'C:/Users/fellipe.silva/Anaconda3/Lib/site-

packages/mpl_toolkits/basemap/data'

Reading Data I Built with Latitude and Longitude values of States into a Dataframe

import pandas as pd

read the data

USA = pd.read_csv('12B-States.csv', sep=",")

USA.head(5)

Collecting only the columns needed

data = USA[['abv', 'latitude', 'longitude']]

61

Factorizing the states abv to use as colors inside the global map plot. This makes another column

data['label_color'] = pd.factorize(data['abv'])[0]

Renaming abv to STATE so I'll merge with my pandasDF by this column

data.columns=['STATE', 'latitude', 'longitude', 'label_color']

Looking at the results

data.tail(3)

Lokking at the Dataframe I want to merge

pandasDF.head(3)

Merging (left) pandasDF and the USA long/lat data

mergedDF = pd.merge(left= pandasDF, right= data, how= 'left', left_on= 'STATE', right_on= 'STATE')

mergedDF.head(5)

from mpl_toolkits.basemap import Basemap

import numpy as np

import matplotlib.pyplot as plt

plt.figure(figsize=(18,10))

#llcrnrlon-> longitude of lower left hand corner of the desired map domain (degrees).

#llcrnrlat-> latitude of lower left hand corner of the desired map domain (degrees).

#urcrnrlon-> longitude of upper right hand corner of the desired map domain (degrees).

#urcrnrlat-> latitude of upper right hand corner of the desired map domain (degrees).

Starting with the basemap function to initialize a map

maps=Basemap(llcrnrlon=-180, llcrnrlat=-65, urcrnrlon=180, urcrnrlat=80)

Adding elements

maps.drawmapboundary(fill_color='w')

maps.fillcontinents(color='grey', alpha=0.3)

maps.drawcoastlines(linewidth=0.1, color="white")

#maps.drawcountries()

Add a point per position

maps.scatter(mergedDF['longitude'], mergedDF['latitude'], s=mergedDF['Number_Of_Attendance'],

alpha=0.4, c=mergedDF['label_color'], cmap="Reds")

As we can see, all data are located only in the USA. Let's look closer.

Focusing in the USA

from mpl_toolkits.basemap import Basemap

import numpy as np

62

import matplotlib.pyplot as plt

plt.figure(figsize=(18,10))

#llcrnrlon-> longitude of lower left hand corner of the desired map domain (degrees).

#llcrnrlat-> latitude of lower left hand corner of the desired map domain (degrees).

#urcrnrlon-> longitude of upper right hand corner of the desired map domain (degrees).

#urcrnrlat-> latitude of upper right hand corner of the desired map domain (degrees).

Always start with the basemap function to initialize a map

maps=Basemap(llcrnrlon=-165, llcrnrlat=10, urcrnrlon=-50, urcrnrlat=60)

Then add element: draw coast line, map boundary, and fill continents:

maps.drawmapboundary(fill_color='w')

maps.fillcontinents(color='grey', alpha=0.3)

maps.drawcoastlines(linewidth=0.1, color="white")

maps.drawcountries()

maps.drawstates()

Add a point per position

maps.scatter(mergedDF['longitude'], mergedDF['latitude'], s=mergedDF['Number_Of_Attendance']*15,

alpha=0.6, c=mergedDF['label_color'], cmap="YlOrRd")

Plot Info

plt.text(-160, 13,'Where All Data are Located', ha='left', va='bottom', size=20, color='#000000')

But among all, which State has the most Churn?

States with most and less Churn

States with most Churn

02.SQL Functions

pysparkSqlDF = spSession.sql("select STATE, TARGET as Churn, count(ID) as Number_Of_Attendance \

 from telecomTB \

 group by STATE, Churn \

 order by STATE, Churn")

pysparkSqlDF.show()

Transforming to Pandas so I'll plot some analysis using Seaborn

pandasDF = pysparkSqlDF.toPandas()

#pandasDF.filter(['Churn', 'Number_Of_Attendance'])

#pandasDF[['Churn', 'Number_Of_Attendance']]

Chrn = pandasDF[pandasDF.Churn == 1].sort_values(by=['STATE'], ascending = True)

Chrn.head(5)

63

NotChrn = pandasDF[pandasDF.Churn == 2].sort_values(by=['STATE'], ascending = True)

NotChrn.head(5)

Setting width and height of the plot-figure

fig, axarr = plt.subplots(2, 1, figsize=(18,10))

sns.barplot(x=Chrn['STATE'], y=Chrn.Number_Of_Attendance, palette='YlGnBu_r',

ax=axarr[0]).set_title('Qt of Churns by States')

sns.barplot(x=NotChrn['STATE'], y=NotChrn.Number_Of_Attendance, palette='YlGnBu_r',

ax=axarr[1]).set_title('Qt of No Churns by States')

As observed above:

State with most Churn: Texas(TX) and New Jersey(NJ)

Merging (left) pandasDF and the USA long/lat data

mergedDF = pd.merge(left= Chrn, right= data, how= 'left', left_on= 'STATE', right_on= 'STATE')

mergedDF = mergedDF.sort_values(by=['Number_Of_Attendance'], ascending = False)

mergedDF = mergedDF.head(5)

Top 5 States with Most Churn

from mpl_toolkits.basemap import Basemap

import numpy as np

import matplotlib.pyplot as plt

plt.figure(figsize=(18,10))

#llcrnrlon-> longitude of lower left hand corner of the desired map domain (degrees).

#llcrnrlat-> latitude of lower left hand corner of the desired map domain (degrees).

#urcrnrlon-> longitude of upper right hand corner of the desired map domain (degrees).

#urcrnrlat-> latitude of upper right hand corner of the desired map domain (degrees).

Always start with the basemap function to initialize a map

maps=Basemap(llcrnrlon=-165, llcrnrlat=10, urcrnrlon=-50, urcrnrlat=60)

Then add element: draw coast line, map boundary, and fill continents:

maps.drawmapboundary(fill_color='w')

maps.fillcontinents(color='grey', alpha=0.3)

maps.drawcoastlines(linewidth=0.1, color="white")

maps.drawcountries()

maps.drawstates()

Add a point per position

maps.scatter(mergedDF['longitude'], mergedDF['latitude'], s=mergedDF['Number_Of_Attendance']*70,

alpha=0.6, c=mergedDF['label_color'], cmap="winter")

64

Plot Info

plt.text(-160, 13,'Top 5 States with Most Churn', ha='left', va='bottom', size=20, color='#000000')

Merging (left) pandasDF and the USA long/lat data

mergedDF = pd.merge(left= Chrn, right= data, how= 'left', left_on= 'STATE', right_on= 'STATE')

mergedDF = mergedDF.sort_values(by=['Number_Of_Attendance'], ascending = False)

mergedDF = mergedDF.tail(5)

Top 5 States with Less Churn

from mpl_toolkits.basemap import Basemap

import numpy as np

import matplotlib.pyplot as plt

plt.figure(figsize=(18,10))

#llcrnrlon-> longitude of lower left hand corner of the desired map domain (degrees).

#llcrnrlat-> latitude of lower left hand corner of the desired map domain (degrees).

#urcrnrlon-> longitude of upper right hand corner of the desired map domain (degrees).

#urcrnrlat-> latitude of upper right hand corner of the desired map domain (degrees).

Always start with the basemap function to initialize a map

maps=Basemap(llcrnrlon=-165, llcrnrlat=10, urcrnrlon=-50, urcrnrlat=70)

Then add element: draw coast line, map boundary, and fill continents:

maps.drawmapboundary(fill_color='w')

maps.fillcontinents(color='grey', alpha=0.3)

maps.drawcoastlines(linewidth=0.1, color="white")

maps.drawcountries()

maps.drawstates()

Add a point per position

maps.scatter(mergedDF['longitude'], mergedDF['latitude'], s=mergedDF['Number_Of_Attendance']*180,

alpha=0.6, c=mergedDF['label_color'], cmap="winter")

Plot Info

plt.text(-160, 13,'Top 5 States with Less Churn', ha='left', va='bottom', size=20, color='#000000')

A business opportunity is to find the gaps where services can be offered to cover a customer need that

he/she doesn't even know

Let's see what this dataset is telling us about these opportunities

First Opportunity

First - States with with most international calls and without an international plan

pysparkSqlDF = spSession.sql("select STATE, count(ID) as QT_INTPLAN \

 from telecomTB \

65

 where INTPLAN == 2 \

 group by STATE \

 order by QT_INTPLAN desc")

pysparkSqlDF.show(10)

These are the top 10 States that makes international calls but doesn't have an International Plan,

maybe a marketing plan could be introduced in these places to achieve more sales.

It's possible to go even further looking at individuals customers, as follows:

Second Opportunity

Second - more specifically: ID's with most international calls and without an international plan

pysparkSqlDF = spSession.sql("select ID as CUSTOMER, TTINTCALLS \

 from telecomTB \

 where INTPLAN == 2 \

 order by TTINTCALLS desc")

pysparkSqlDF.show()

In this way it's possible to map a customer usage of international calls and offer a personalised plan

individually.

But how my marketing plan could convince that customers to buy it? Let's see through the data again:

But how my marketing plan could convince that customers to buy it? Let's see through the data again:

Third Opportunity

Third - Analysing if customers with an international plan are calling more and paying less charges

and if who hasn't the international plan are paying higuer taxes

With International Plan

pysparkSqlDF = spSession.sql("select ID as CUSTOMER, TTINTCALLS, TTINTCHARGE \

 from telecomTB \

 where INTPLAN == 1")

#pysparkSqlDF.show()

int_plan_DF = pysparkSqlDF.toPandas()

int_plan_DF['CHARGEBYCALL'] = int_plan_DF['TTINTCHARGE'] / int_plan_DF['TTINTCALLS']

int_plan_DF['CUSTOMER'] = int_plan_DF.index

int_plan_DF = int_plan_DF[50:80]

Without International Plan

pysparkSqlDF = spSession.sql("select ID as CUSTOMER, TTINTCALLS, TTINTCHARGE \

 from telecomTB \

 where INTPLAN == 2")

#pysparkSqlDF.show()

no_int_plan_DF = pysparkSqlDF.toPandas()

no_int_plan_DF['CHARGEBYCALL'] = no_int_plan_DF['TTINTCHARGE'] / no_int_plan_DF['TTINTCALLS']

no_int_plan_DF['CUSTOMER'] = no_int_plan_DF.index

no_int_plan_DF = no_int_plan_DF[50:80]

66

Let's take a look at some graphs

Setting width and height of the plot-figure

plt.figure(figsize=(18,10))

plt.plot('CUSTOMER', 'CHARGEBYCALL', data=int_plan_DF, marker='', markerfacecolor='blue',

markersize=12, color='green', linestyle = 'dashed', linewidth=1, label='International_Plan')

plt.plot('CUSTOMER', 'CHARGEBYCALL', data=no_int_plan_DF, marker='', markerfacecolor='red',

markersize=12, color='red', linewidth=1, label='No_International_Plan')

plt.title('Charges by Call')

plt.xticks([])

plt.legend()

As noted above in the red line, people without an international plan are paying more charges by call,

the difference:

#print(int_plan_DF.CHARGEBYCALL.mean())

#print(no_int_plan_DF.CHARGEBYCALL.mean())

print("Customers without an international plan are paying %.2f%% more taxes."

%(no_int_plan_DF.CHARGEBYCALL.mean()*100/int_plan_DF.CHARGEBYCALL.mean()-100))

As we saw some opportunities to the customers, let's take a look at the opportunities to the telecom

company

Fourth Opportunity

Fourth - Now looking how the company is acquiring resources analysing the Charges of each time of

day

Get a ScatterPlot of the Charges of each time of day (Maybe in one Graph)

pysparkSqlDF = spSession.sql("select TTDAYCHARGE/TTDAYMIN as DAY_CHARGE_MIN,

TTEVECHARGE/TTEVEMIN as EVENING_CHARGE_MIN \

 from telecomTB")

#pysparkSqlDF.show()

pandasDF = pysparkSqlDF.toPandas()

pandasDF[0:1]

print('The Charges Applied by the Telecom Company are:')

print('Day Charge/Min: $%.3f' %(pandasDF.DAY_CHARGE_MIN[0]))

print('Evening Charge/Min: $%.3f' %(pandasDF.EVENING_CHARGE_MIN[0]))

pysparkSqlDF = spSession.sql("select TTDAYMIN, TTEVEMIN \

 from telecomTB")

#pysparkSqlDF.show()

pandasDF = pysparkSqlDF.toPandas()

import pandas as pd

plotingDF = pd.DataFrame({'Qt': [pandasDF.TTDAYMIN.sum(), pandasDF.TTEVEMIN.sum()],

67

 'Time_of_Day': ['Day', 'Evening']})

Setting width and height of the plot-figure

plt.figure(figsize=(18,10))

sns.barplot(x=plotingDF['Qt'], y=plotingDF.Time_of_Day, palette='Greens')

plt.title("Total Minutes Spend in Calls")

If we take a close look at the plot there is not much difference between day and evening quantities of

calls

The Day Charge is USD 0.170 and the Evening Charge is USD 0.085

dayCharge = 0.170

eveCharge = 0.085

plotingDF = pd.DataFrame({'Qt': [pandasDF.TTDAYMIN.sum()*dayCharge,

pandasDF.TTEVEMIN.sum()*eveCharge],

 'Time_of_Day': ['Day', 'Evening']})

Setting width and height of the plot-figure

plt.figure(figsize=(18,10))

sns.barplot(x=plotingDF['Qt'], y=plotingDF.Time_of_Day, palette='Greens')

plt.title("Total Received (USD) by Calls")

print("Total Received: $%.2f" %(pandasDF.TTDAYMIN.sum()*dayCharge +

pandasDF.TTEVEMIN.sum()*eveCharge))

Total Received: $158,801.11

Knowing this volume of calls per time of day it is possible to manage the Day or/and Evening Charge

and see what happens to earnings

dayCharge = 0.16 # Lowering 0.01 cents

eveCharge = 0.105 # Increasing 0.02 cents

plotingDF = pd.DataFrame({'Qt': [pandasDF.TTDAYMIN.sum()*dayCharge,

pandasDF.TTEVEMIN.sum()*eveCharge],

 'Time_of_Day': ['Day', 'Evening']})

Setting width and height of the plot-figure

plt.figure(figsize=(18,10))

sns.barplot(x=plotingDF['Qt'], y=plotingDF.Time_of_Day, palette='Greens')

plt.title("Total Received (USD) by Calls")

print("Total Received: USD %.2f" %(pandasDF.TTDAYMIN.sum()*dayCharge +

pandasDF.TTEVEMIN.sum()*eveCharge))

By this way we leave from USD 158,801.11 to USD 166,206.55 only changing some cents

68

On the other hand, it's possible not to change the charge but make some incentive marketing for the

daytime consumption.

What if the volume of calls increased in 10% by day, how much the company will receive?

Without changing the charges but making marketing

dayCharge = 0.170

eveCharge = 0.085

plotingDF = pd.DataFrame({'Qt': [pandasDF.TTDAYMIN.sum()*1.1*dayCharge,

pandasDF.TTEVEMIN.sum()*eveCharge],

 'Time_of_Day': ['Day', 'Evening']})

Setting width and height of the plot-figure

plt.figure(figsize=(18,10))

sns.barplot(x=plotingDF['Qt'], y=plotingDF.Time_of_Day, palette='Greens')

plt.title("Total Received (USD) by Calls")

print("Total Received: $%.2f" %(pandasDF.TTDAYMIN.sum()*1.1*dayCharge +

pandasDF.TTEVEMIN.sum()*eveCharge))

By this way we leave from USD 158,801.11 to USD 168,987.34 by acquiring 10% more customers

Fifth Opportunity

Fifth - The last one, Understand How Much NBCSCALLS are converted in Churn(TARGET), i.e., the

correlation between both features

pysparkSqlDF = spSession.sql("select NBCSCALLS, TARGET as CHURN \

 from telecomTB")

#pysparkSqlDF.show()

pandasDF = pysparkSqlDF.toPandas()

Setting width and height of the plot-figure

plt.figure(figsize=(18,10))

sns.distplot(pandasDF['NBCSCALLS'], bins=10, hist=True, kde=False, rug=False, color='#82ffb0')

Through the graph that follows we get to assume that most customers calls from 1 to 4 times more

often

But how much of these are converted in Positive Churn?

pysparkSqlDF = spSession.sql("select NBCSCALLS, TARGET as CHURN, count(ID) as NUMBER_OF_CHURN

\

 from telecomTB \

 group by NBCSCALLS, CHURN \

 order by NBCSCALLS asc")

pysparkSqlDF.show()

pandasDF = pysparkSqlDF.toPandas()

Setting width and height of the plot-figure

plt.figure(figsize=(18,10))

69

sns.lineplot(data=pandasDF[pandasDF.CHURN == 1], x='NBCSCALLS', y='NUMBER_OF_CHURN',

palette='Red', legend=False).set_title('Churn Index by Number of Customer Calls')

plt.xlabel('Number of Customer Service Calls')

As the graph above shows, my recommendation is to pay attention in number of Customer Service '4'

and understand why

this sudden high on number of churn is happening once the trend was comming down.

Analysis Performed

States with with most international calls and without an international plan

or more specifically: ID's with most international calls and without an international plan

Analyse if who has the international plan calls more and pay less

and if who hasn't the intenational plan is paying high taxes

Using Line plots

Get a ScatterPlot of the Charges of each time of day (Maybe in one Graph)

Get the Highest, Mid and Lowest Charge per Time of Day

Get the Charge per time of Day (and maybe include in the ScatterPlot individually)

Get a line graph with minutes together with charge by ID

Get min/calls each time of day

Get How Much NBCSCALLS are converted in Churn(TARGET), i.e., the correlation between both features

Machine Learning

Features Available to Modeling

telecomDF4.printSchema()

Data Balance

Before entering in the Machine Learning Model let's see if we have balanced data so my model will be

fair in predicting both Churn and No Churn

pysparkSqlDF = spSession.sql("select TARGET, count(ID) as INSTANCES \

 from telecomTB \

 group by TARGET")

pysparkSqlDF.show()

Transforming to Pandas so I'll plot some analysis using Seaborn

pandasDF = pysparkSqlDF.toPandas()

plt.figure(figsize=(7,7))

70

plt.pie(pandasDF['INSTANCES'], labels=['Churn', 'No Churn'], colors=['#ff6666', '#99ff99'],

wedgeprops={'linewidth': 7, 'edgecolor': 'white'}, autopct='%1.1f%%')

The ideal is to generate a machine learning model that can predict both one attribute and another, but

unfortunatelly I don't have enough data from Churn.

This project will continue knowing that my model could possibly fail in predicting Churn.

After training I'll acquire new, random and unknown data to test if the model was successful in this

way.

Correlation

Correlation between features

Getting all my data into a dataframe:

#telecomDF4.take(5)

First I'll get each column of telecomDF4

for i in telecomDF4.columns:

 # for each one I'll 'select(i)', and use the 'take' action from [0][0] combination as if it was a matrix

 if not(isinstance(telecomDF4.select(i).take(1)[0][0], str)):

 print("Correlation between Target(Churn) with: ", i, telecomDF4.stat.corr('TARGET', i))

Pre-Processing the Dataset

Pre-Processing my Dataset

Creating an LabeledPoint (target, Vector[features])

Removing not relevant columns or with low correlation to the model, this way I choose the columns I

want the model to have (just observe the selection done in Vectors.dense(....))

ATTENTION TO THIS VERY IMPORTANT CONCEPT!!!!!!!!!

SOME APACHE SPARK MACHINE LEARNING ALGORITHMS (MAINLY THE REGRESSION TYPE) NEED DATA

TO BE

IN A SPECIFIC FORMAT TO PERFORM THE TRAINING(FIT).

TO THIS HAPPEN I NEED TO DELIVER TO THE MODEL THE DATA IN VECTOR FORMAT, SPECIFICALLY

USING A

DENSE OR SPARSE VECTOR. THIS BECAUSE APACHE SPARK WORKS WITH CLUSTER AND THEN IT WILL

DISTRIBUTE THESE DATA BETWEEN MACHINES.

from pyspark.ml.linalg import Vectors

def transformFeatures(row):

 obj = (row['TARGET'], Vectors.dense(row['INTPLAN'], row['NBVMMSG'], row['TTDAYMIN'],

row['TTDAYCHARGE'], row['(TTDAYMIN / TTDAYCALLS)'], row['TTEVEMIN'], row['TTEVECHARGE'],

row['NBCSCALLS']))

 return obj

HERE telecomDF4 IS A DATAFRAME, BUT IS BEING CONVERTED TO AN rdd AND THEN I'M ABLE TO USE

THE map FUNCTION

71

telecomRDD4 = telecomDF4.rdd.map(transformFeatures)

telecomRDD4.take(5)

CONVERTING TO DATAFRAME AGAIN

telecomDF5 = spSession.createDataFrame(telecomRDD4, ['TARGET', 'FEATURES'])

telecomDF5.show(10)

telecomDF5.cache()

Machine Learning Modeling
Train/Test Split

Now entering the Machine Learning Process

import random

random.seed(69)

(train_data, test_data) = telecomDF5.randomSplit([0.7, 0.3])

print(train_data.count(), "data to train my model")

print(test_data.count(), "data to test my model")

Looking for how much data of Churn 'yes'(1) and 'no'(2) we have

#train_data.select('TARGET').distinct().show()

Looking for how much data of Churn 'yes'(1) and 'no'(2) we have in the train_data

train_data.cube('TARGET').agg(count('TARGET').alias('Qt of Data')).orderBy('TARGET').show()

Looking for how much data of Churn 'yes'(1) and 'no'(2) we have in the test_data

test_data.cube('TARGET').agg(count('TARGET').alias('Qt of Data')).orderBy('TARGET').show()

Creating and Training Model - I

Decision Tree ML Model

from pyspark.ml.classification import DecisionTreeClassifier

from pyspark.ml.evaluation import MulticlassClassificationEvaluator

Avoiding Underfitting and Overfitting in Decision Trees

for depth in range(1,15):

 model_v1 = DecisionTreeClassifier(maxDepth=depth, labelCol= 'TARGET', featuresCol= 'FEATURES')

 model_v1_train = model_v1.fit(train_data)

 model_v1_prediction = model_v1_train.transform(test_data)

 evaluator = MulticlassClassificationEvaluator(predictionCol= 'prediction',

 labelCol = 'TARGET',

 metricName = 'accuracy')

 acc = evaluator.evaluate(model_v1_prediction)

 print('In Depth %.0f this model is %.2f%% Accurate.' %(depth, acc*100))

Better Depth is 6

72

Building the model

model_v1 = DecisionTreeClassifier(maxDepth=6, labelCol= 'TARGET', featuresCol= 'FEATURES')

Training my Model

model_v1_train = model_v1.fit(train_data)

print(model_v1_train.numNodes, "Nodes")

print(model_v1_train.depth, "Depth")
Predictions and Evaluation

Making Predictions with test_data

model_v1_prediction = model_v1_train.transform(test_data)

model_v1_prediction.select('prediction', 'TARGET').collect()

Evaluating my model

evaluator = MulticlassClassificationEvaluator(predictionCol= 'prediction',

 labelCol = 'TARGET',

 metricName = 'accuracy')

acc = evaluator.evaluate(model_v1_prediction)

print('This model is %.2f%% Accurate.' %(acc*100))

Taking the Confusion Matrix

model_v1_prediction.groupBy('TARGET', 'prediction').count().show()

Plotting Confusion Matrix

model_v1_prediction.head(5)

type(model_v1_prediction)

Transforming to Pandas so I'll plot some analysis using Seaborn

pandasDF = model_v1_prediction.toPandas()

Getting Necessarry Data from model_v1_prediction

Actual = pandasDF.ix[:, 'TARGET']

Predic = pandasDF.ix[:, 'prediction']

data = {'Actual': Actual,

 'Predicted': Predic

 }

confMatDF = pd.DataFrame(data, columns=['Actual', 'Predicted'])

confMatDF.head(5)

Renaming Target (1-> Churn, 2-> No Churn)

def targetTransformation(lst):

 if lst == 1:

73

 return 'Churn'

 else:

 return 'No Churn'

auxList1 = list(confMatDF['Actual'])

auxList2 = list(map(targetTransformation, auxList1))

confMatDF['Actual'] = auxList2

auxList1 = list(confMatDF['Predicted'])

auxList2 = list(map(targetTransformation, auxList1))

confMatDF['Predicted'] = auxList2

confusionMatrix = pd.crosstab(confMatDF.Actual, confMatDF.Predicted, rownames=['Actual Value'],

colnames=['Predicted Value'])

confusionMatrix

confusionMatrix.values.sum()

Looking as Percentage of Churn and No Churn

import numpy as np

Setting width and height of the plot-figure

plt.figure(figsize=(18,10))

status = ['True Positive', 'False Negative', 'False Positive', 'True Negative']

val = [x for x in confusionMatrix.values.flatten()]

percent= ['{:.2%}'.format(x) for x in (confusionMatrix.values.flatten()/confusionMatrix.values.sum())]

labels = [f'{q1}\n{q2}\n{q3}' for q1, q2, q3 in zip(status, val, percent)]

labels = np.asarray(labels).reshape(2,2)

sns.heatmap((confusionMatrix/confusionMatrix.values.sum()), annot=labels, fmt='', cmap='BuGn',

cbar=False)

sns.set(font_scale=1.5)

plt.title('Confusion Matrix')

We get pretty good results but the True Negative is clearly high because we don't have a balanced

dataset

Let's see the reflex of this unbalanced data in an unseen data later

Creating and Training Model - II

Random Forest ML Model

from pyspark.ml.classification import RandomForestClassifier

from pyspark.ml.evaluation import MulticlassClassificationEvaluator

74

Building new model

model_v2 = RandomForestClassifier(labelCol = "TARGET", featuresCol = "FEATURES")

model_v2_train = model_v2.fit(train_data)

With the trained model I show it new data to make predictions with test_data

model_v2_prediction = model_v2_train.transform(test_data)

model_v2_prediction.select('prediction', 'TARGET').collect()

Evaluating my model

evaluator = MulticlassClassificationEvaluator(predictionCol = "prediction",

 labelCol = "TARGET",

 metricName = "accuracy")

acc = evaluator.evaluate(model_v2_prediction)

print('This model is %.2f%% Accurate.' %(acc*100))

Plotting Confusion Matrix

model_v2_prediction.head(5)

type(model_v2_prediction)

Transforming to Pandas so I'll plot some analysis using Seaborn

pandasDF = model_v2_prediction.toPandas()

Getting Necessarry Data from model_v1_prediction

Actual = pandasDF.ix[:, 'TARGET']

Predic = pandasDF.ix[:, 'prediction']

data = {'Actual': Actual,

 'Predicted': Predic

 }

confMatDF = pd.DataFrame(data, columns=['Actual', 'Predicted'])

confMatDF.head(5)

Renaming Target (1-> Churn, 2-> No Churn)

def targetTransformation(lst):

 if lst == 1:

 return 'Churn'

 else:

 return 'No Churn'

auxList1 = list(confMatDF['Actual'])

auxList2 = list(map(targetTransformation, auxList1))

confMatDF['Actual'] = auxList2

75

auxList1 = list(confMatDF['Predicted'])

auxList2 = list(map(targetTransformation, auxList1))

confMatDF['Predicted'] = auxList2

confusionMatrix = pd.crosstab(confMatDF.Actual, confMatDF.Predicted, rownames=['Actual Value'],

colnames=['Predicted Value'])

confusionMatrix

confusionMatrix.values.sum()

Looking as Percentage of Churn and No Churn

import numpy as np

Setting width and height of the plot-figure

plt.figure(figsize=(18,10))

status = ['True Positive', 'False Negative', 'False Positive', 'True Negative']

val = [x for x in confusionMatrix.values.flatten()]

percent= ['{:.2%}'.format(x) for x in (confusionMatrix.values.flatten()/confusionMatrix.values.sum())]

labels = [f'{q1}\n{q2}\n{q3}' for q1, q2, q3 in zip(status, val, percent)]

labels = np.asarray(labels).reshape(2,2)

sns.heatmap((confusionMatrix/confusionMatrix.values.sum()), annot=labels, fmt='', cmap='BuGn',

cbar=False)

sns.set(font_scale=1.5)

plt.title('Confusion Matrix')

The first model leads to a better Accuracy and TP and TN higher.

The second one is giving a better TN prediction, but the FN is higher than the TP.

My choice is the first model.

New and Unseen Data

Loading Data

Datasets --

Loading data and getting an RDD

textFile CREATES AN RDD

telecomRDD = sc.textFile("projeto4_telecom_teste.csv")

Optimizing performance using cache on RDD

telecomRDD.cache()

Making an Action

telecomRDD.count()

76

Making another Action

telecomRDD.take(5)

Note that the data is between simple aspects '' (each line), indicating they are strings, so I'll convert it

further using a function I'll create

Feature Engineering

Cleaning data - Removing first line

telecomRDD2 = telecomRDD.filter(lambda x: "state" not in x)

telecomRDD2.count()

Looking Again at my data

telecomRDD2.take(5)

Looking to ALL data and trying to figure out if there is missing values (?, NaN, "", ...)

telecomRDD2.collect()

No Missing Values

Preparing Data to Dataframe

Feature Engineering I - Function

def featengI(data):

 # Dividing data into columns, separating by "," character

 dataList = data.split(",")

 ID = (dataList[0]) # ID

 STATE = str(dataList[1]) # State -> North American Abbreviated States (HI - Hawaii / MT -

Montana / OH - Ohio)

 ACCLGT = int(dataList[2]) # Account_Length

 AREACODE = (dataList[3]) # Phone Number Area Code

 #PHONENB = (dataList[4]) # Phone_No -> Phone Number (IT IS NOT IN THE test-train DATA)

 #INTPLAN = (dataList[4]) # International_Plan -> "yes" or "no" (Convert yes->1 or no->2)

 INTPLAN = 1.0 if dataList[4] == '"yes"' else 2.0

 #VMPLAN = (dataList[5]) # Voice_Mail_Plan -> "yes" or "no" (Convert yes->1 or no->2) I THINK

THIS FEATURE IS NOT HELPING AND CAN BE ELIMINATED BECAUSE THE NEXT VARIABLE (NBVMMSG)

ONLY HAS VALUES WHEN THIS IS '1', IT'S LIKE DOUBLE INFORMATION ABOUT THE SAME THING

 VMPLAN = 1.0 if dataList[5] == '"yes"' else 2.0

 NBVMMSG = int(dataList[6]) # Number_Voice_Mail_Messages

 TTDAYMIN = float(dataList[7]) # Total_Day_minutes

 TTDAYCALLS = int(dataList[8]) # Total_Day_Calls

 TTDAYCHARGE = float(dataList[9]) # Total_Day_Charge

 TTEVEMIN = float(dataList[10]) # Total_Eve_Minutes

 TTEVECALLS = int(dataList[11]) # Total_Eve_Calls

 TTEVECHARGE = float(dataList[12]) # Total_Eve_Charge

77

 TTNGTMIN = float(dataList[13]) # Total_Night_Minutes

 TTNGTCALLS = int(dataList[14]) # Total_Night_Calls

 TTNGTCHARGE = float(dataList[15]) # Total_Night_Charge

 TTINTMIN = float(dataList[16]) # Total_Intl_Minutes

 TTINTCALLS = int(dataList[17]) # Total_Intl_Calls

 TTINTCHARGE = float(dataList[18]) # Total_Intl_Charge

 NBCSCALLS = int(dataList[19]) # Number_Customer_Service_Calls

 #TARGET = (dataList[20]) # Churn (Target) -> "yes" or "no" (Convert yes->1 or no->2)

 TARGET = 1 if dataList[20] == '"yes"' else 2

 # Creating 'lines' using the 'Row' function, preparing to the dataframe analysis, cleaning and

converting the data from string to float

 lines = Row(ID = ID, STATE = STATE, ACCLGT = ACCLGT, AREACODE = AREACODE,

 INTPLAN = INTPLAN, VMPLAN = VMPLAN, NBVMMSG = NBVMMSG,

 TTDAYMIN = TTDAYMIN, TTDAYCALLS = TTDAYCALLS, TTDAYCHARGE = TTDAYCHARGE,

 TTEVEMIN = TTEVEMIN, TTEVECALLS = TTEVECALLS, TTEVECHARGE = TTEVECHARGE,

 TTNGTMIN = TTNGTMIN, TTNGTCALLS = TTNGTCALLS, TTNGTCHARGE = TTNGTCHARGE,

 TTINTMIN = TTINTMIN, TTINTCALLS = TTINTCALLS, TTINTCHARGE = TTINTCHARGE,

 NBCSCALLS = NBCSCALLS, TARGET = TARGET)

 return lines

Applying function above to RDD without headers

telecomRDD3 = telecomRDD2.map(featengI)

Looking at the result

telecomRDD3.cache

telecomRDD3.take(1)

All data are in String format, I'll convert to Integer or Float as needed

#schema = StructType([

StructField('ID', StringType(), True)

#])

Creating a Pyspark Dataframe

Creating a Dataframe SO I'M ABLE TO USE THE select FUNCTION FROM SparkSQL

telecomDF = spSession.createDataFrame(telecomRDD3)

type(telecomDF)

Printing telecomDF Object Type and each Row Type

print(telecomDF)

As noted SOME data (ID, STATE) are in String format, I'll convert to Integer or Float as needed

telecomDF.printSchema()

78

telecomDF.show(5)

Removing Double Quotes in Strings

Function to Remove DoubleQuote (DQ) so I'll transform from String to Integer

def removingDQ(stringData):

 return stringData.replace('"', "")

Using udf -> User Defined Function (Turning Python Functions into PySpark Functions)

Look at this -> https://changhsinlee.com/pyspark-udf/

from pyspark.sql.functions import udf

udf_removingDQ = udf(removingDQ, StringType())

telecomDF2 = telecomDF.withColumn('ID', udf_removingDQ(telecomDF['ID'])).withColumn('STATE',

udf_removingDQ(telecomDF['STATE']))

telecomDF2.show(30)

Now that necessary data doesn't have DQ I'm able to perform casting to transform from one type to

another

As follows there are 2 ways to make this transformation

Transforming Features (Two Possibilities)
My Choice

I'll choose the second one

telecomDF4 = telecomDF2.select(telecomDF2['ID'].cast(IntegerType()).alias('ID'),

 telecomDF2['STATE'],

 telecomDF2['ACCLGT'],

 telecomDF2['INTPLAN'],

 telecomDF2['VMPLAN'],

 telecomDF2['NBVMMSG'],

 telecomDF2['TTDAYMIN'],

 telecomDF2['TTDAYCALLS'],

 telecomDF2['TTDAYCHARGE'],

 telecomDF2['TTDAYMIN']/telecomDF2['TTDAYCALLS'],

 telecomDF2['TTEVEMIN'],

 telecomDF2['TTEVECALLS'],

 telecomDF2['TTEVECHARGE'],

 telecomDF2['TTEVEMIN']/telecomDF2['TTEVECALLS'],

 telecomDF2['TTINTMIN'],

 telecomDF2['TTINTCALLS'],

 telecomDF2['TTINTCHARGE'],

 telecomDF2['TTINTMIN']/telecomDF2['TTINTCALLS'],

 telecomDF2['NBCSCALLS'],

 telecomDF2['TARGET']

)

79

telecomDF4.show(3)

Registering the dataframe as a Temp Table (so i'll be able to use queries SQL ANSI)

HERE I'M CREATING A REAL TABLE, IT WILL EXIST IN MEMORY, NOT ONLY THE DATAFRAME

telecomDF4.createOrReplaceTempView("telecomTB")

Data Balance

Before entering in the Machine Learning Model let's see if we have balanced data so my model will be

fair in predicting both Churn and No Churn

pysparkSqlDF = spSession.sql("select TARGET, count(ID) as INSTANCES \

 from telecomTB \

 group by TARGET")

pysparkSqlDF.show()

Transforming to Pandas so I'll plot some analysis using Seaborn

pandasDF = pysparkSqlDF.toPandas()

plt.figure(figsize=(7,7))

plt.pie(pandasDF['INSTANCES'], labels=['Churn', 'No Churn'], colors=['#ff6666', '#99ff99'],

wedgeprops={'linewidth': 7, 'edgecolor': 'white'}, autopct='%1.1f%%')

The test data provided also has few Churn Data, It's more likeble that the model will have a great

acurracy.

But it's important to notice that in a real environment I highly recommend to acquire more Churn data.

Correlation

Correlation between features

Getting all my data into a dataframe:

#telecomDF4.take(5)

First I'll get each column of telecomDF4

for i in telecomDF4.columns:

 # for each one I'll 'select(i)', and use the 'take' action from [0][0] combination as if it was a matrix

 if not(isinstance(telecomDF4.select(i).take(1)[0][0], str)):

 print("Correlation between Target(Churn) with: ", i, telecomDF4.stat.corr('TARGET', i))

Pre-Processing the Dataset

Pre-Processing my Dataset

Criando um LabeledPoint (target, Vector[features])

Removing not relevant columns or with low correlation to the model, this way I choose the columns I

want the model to have (just observe the selection done in Vectors.dense(....))

ATTENTION TO THIS VERY IMPORTANT CONCEPT!!!!!!!!!

80

SOME APACHE SPARK MACHINE LEARNING ALGORITHMS (MAINLY THE REGRESSION TYPE) NEED DATA

TO BE

IN A SPECIFIC FORMAT TO PERFORM THE TRAINING(FIT).

TO THIS HAPPEN I NEED TO DELIVER TO THE MODEL THE DATA IN VECTOR FORMAT, SPECIFICALLY

USING A

DENSE OR SPARSE VECTOR. THIS BECAUSE APACHE SPARK WORKS WITH CLUSTER AND THEN IT WILL

DISTRIBUTE THESE DATA BETWEEN MACHINES.

from pyspark.ml.linalg import Vectors

def transformFeatures(row):

 obj = (row['TARGET'], Vectors.dense(row['INTPLAN'], row['NBVMMSG'], row['TTDAYMIN'],

row['TTDAYCHARGE'], row['(TTDAYMIN / TTDAYCALLS)'], row['TTEVEMIN'], row['TTEVECHARGE'],

row['NBCSCALLS']))

 return obj

HERE telecomDF4 IS A DATAFRAME, BUT IS BEING CONVERTED TO AN rdd AND THEN I'M ABLE TO USE

THE map FUNCTION

telecomRDD4 = telecomDF4.rdd.map(transformFeatures)

telecomRDD4.take(5)

CONVERTING TO DATAFRAME AGAIN

telecomDF5 = spSession.createDataFrame(telecomRDD4, ['TARGET', 'FEATURES'])

telecomDF5.show(10)

telecomDF5.cache()

Machine Learning Modeling

Making Predictions with test_data

new_data_prediction = model_v1_train.transform(telecomDF5)

Evaluating my model

evaluator = MulticlassClassificationEvaluator(predictionCol= 'prediction',

 labelCol = 'TARGET',

 metricName = 'accuracy')

acc = evaluator.evaluate(new_data_prediction)

print('This model is %.2f%% Accurate.' %(acc*100))

Taking the Confusion Matrix

new_data_prediction.groupBy('TARGET', 'prediction').count().show()

Plotting Confusion Matrix

new_data_prediction.head(5)

type(new_data_prediction)

Transforming to Pandas so I'll plot some analysis using Seaborn

81

pandasDF = new_data_prediction.toPandas()

Getting Necessarry Data from model_v1_prediction

Actual = pandasDF.ix[:, 'TARGET']

Predic = pandasDF.ix[:, 'prediction']

data = {'Actual': Actual,

 'Predicted': Predic

 }

confMatDF = pd.DataFrame(data, columns=['Actual', 'Predicted'])

confMatDF.head(5)

Renaming Target (1-> Churn, 2-> No Churn)

def targetTransformation(lst):

 if lst == 1:

 return 'Churn'

 else:

 return 'No Churn'

auxList1 = list(confMatDF['Actual'])

auxList2 = list(map(targetTransformation, auxList1))

confMatDF['Actual'] = auxList2

auxList1 = list(confMatDF['Predicted'])

auxList2 = list(map(targetTransformation, auxList1))

confMatDF['Predicted'] = auxList2

confusionMatrix = pd.crosstab(confMatDF.Actual, confMatDF.Predicted, rownames=['Actual Value'],

colnames=['Predicted Value'])

confusionMatrix

confusionMatrix.values.sum()

Looking as Percentage of Churn and No Churn

import numpy as np

Setting width and height of the plot-figure

plt.figure(figsize=(18,10))

status = ['True Positive', 'False Negative', 'False Positive', 'True Negative']

val = [x for x in confusionMatrix.values.flatten()]

percent= ['{:.2%}'.format(x) for x in (confusionMatrix.values.flatten()/confusionMatrix.values.sum())]

labels = [f'{q1}\n{q2}\n{q3}' for q1, q2, q3 in zip(status, val, percent)]

82

labels = np.asarray(labels).reshape(2,2)

sns.heatmap((confusionMatrix/confusionMatrix.values.sum()), annot=labels, fmt='', cmap='BuGn',

cbar=False)

sns.set(font_scale=1.5)

plt.title('Confusion Matrix')

We get pretty good results but the True Negative is clearly high because we don't have a balanced

dataset

Like I told before it's important to notice that in a real environment I highly recommend to acquire

more Churn data and try to minimize the False Negative where Churn is considered No Churn.

What is the reflex of having balanced Churn and No Churn Data?

Let's simulate an environment where we have 50/50 data and analyse the Confusion Matrix

Balancing Churn Data

Loading Data

Datasets --

Loading data and getting an RDD

textFile CREATES AN RDD

telecomRDD = sc.textFile("projeto4_telecom_treino.csv")

Optimizing performance using cache on RDD

telecomRDD.cache()

Making an Action

telecomRDD.count()

Making another Action

telecomRDD.take(5)

Note that the data is between simple aspects '' (each line), indicating they are strings, so I'll convert it

further using a function I'll create

Feature Engineering

Cleaning data - Removing first line

telecomRDD2 = telecomRDD.filter(lambda x: "state" not in x)

telecomRDD2.count()

Looking Again at my data

telecomRDD2.take(5)

Looking to ALL data and trying to figure out if there is missing values (?, NaN, "", ...)

telecomRDD2.collect()

83

No Missing Values

Preparing Data to Dataframe

Feature Engineering I - Function

def featengI(data):

 # Dividing data into columns, separating by "," character

 dataList = data.split(",")

 ID = (dataList[0]) # ID

 STATE = str(dataList[1]) # State -> North American Abbreviated States (HI - Hawaii / MT -

Montana / OH - Ohio)

 ACCLGT = int(dataList[2]) # Account_Length

 AREACODE = (dataList[3]) # Phone Number Area Code

 #PHONENB = (dataList[4]) # Phone_No -> Phone Number (IT IS NOT IN THE test-train DATA)

 #INTPLAN = (dataList[4]) # International_Plan -> "yes" or "no" (Convert yes->1 or no->2)

 INTPLAN = 1.0 if dataList[4] == '"yes"' else 2.0

 #VMPLAN = (dataList[5]) # Voice_Mail_Plan -> "yes" or "no" (Convert yes->1 or no->2) I THINK

THIS FEATURE IS NOT HELPING AND CAN BE ELIMINATED BECAUSE THE NEXT VARIABLE (NBVMMSG)

ONLY HAS VALUES WHEN THIS IS '1', IT'S LIKE DOUBLE INFORMATION ABOUT THE SAME THING

 VMPLAN = 1.0 if dataList[5] == '"yes"' else 2.0

 NBVMMSG = int(dataList[6]) # Number_Voice_Mail_Messages

 TTDAYMIN = float(dataList[7]) # Total_Day_minutes

 TTDAYCALLS = int(dataList[8]) # Total_Day_Calls

 TTDAYCHARGE = float(dataList[9]) # Total_Day_Charge

 TTEVEMIN = float(dataList[10]) # Total_Eve_Minutes

 TTEVECALLS = int(dataList[11]) # Total_Eve_Calls

 TTEVECHARGE = float(dataList[12]) # Total_Eve_Charge

 TTNGTMIN = float(dataList[13]) # Total_Night_Minutes

 TTNGTCALLS = int(dataList[14]) # Total_Night_Calls

 TTNGTCHARGE = float(dataList[15]) # Total_Night_Charge

 TTINTMIN = float(dataList[16]) # Total_Intl_Minutes

 TTINTCALLS = int(dataList[17]) # Total_Intl_Calls

 TTINTCHARGE = float(dataList[18]) # Total_Intl_Charge

 NBCSCALLS = int(dataList[19]) # Number_Customer_Service_Calls

 #TARGET = (dataList[20]) # Churn (Target) -> "yes" or "no" (Convert yes->1 or no->2)

 TARGET = 1 if dataList[20] == '"yes"' else 2

 # Creating 'lines' using the 'Row' function, preparing to the dataframe analysis, cleaning and

converting the data from string to float

 lines = Row(ID = ID, STATE = STATE, ACCLGT = ACCLGT, AREACODE = AREACODE,

 INTPLAN = INTPLAN, VMPLAN = VMPLAN, NBVMMSG = NBVMMSG,

 TTDAYMIN = TTDAYMIN, TTDAYCALLS = TTDAYCALLS, TTDAYCHARGE = TTDAYCHARGE,

 TTEVEMIN = TTEVEMIN, TTEVECALLS = TTEVECALLS, TTEVECHARGE = TTEVECHARGE,

84

 TTNGTMIN = TTNGTMIN, TTNGTCALLS = TTNGTCALLS, TTNGTCHARGE = TTNGTCHARGE,

 TTINTMIN = TTINTMIN, TTINTCALLS = TTINTCALLS, TTINTCHARGE = TTINTCHARGE,

 NBCSCALLS = NBCSCALLS, TARGET = TARGET)

 return lines

Applying function above to RDD without headers

telecomRDD3 = telecomRDD2.map(featengI)

Looking at the result

telecomRDD3.cache

telecomRDD3.take(1)

Some data are still in String format, I'll convert to Integer or Float as needed

Creating a Pyspark Dataframe

Creating a Dataframe SO I'M ABLE TO USE THE select FUNCTION FROM SparkSQL

telecomDF = spSession.createDataFrame(telecomRDD3)

type(telecomDF)

Printing telecomDF Object Type and each Row Type

print(telecomDF)

As noted SOME data (ID, STATE) are in String format, I'll convert to Integer or Float as needed

telecomDF.printSchema()

telecomDF.show(5)

Removing Double Quotes in Strings

Function to Remove DoubleQuote (DQ) so I'll transform from String to Integer

def removingDQ(stringData):

 return stringData.replace('"', "")

Using udf -> User Defined Function (Turning Python Functions into PySpark Functions)

Look at this -> https://changhsinlee.com/pyspark-udf/

from pyspark.sql.functions import udf

udf_removingDQ = udf(removingDQ, StringType())

telecomDF2 = telecomDF.withColumn('ID', udf_removingDQ(telecomDF['ID'])).withColumn('STATE',

udf_removingDQ(telecomDF['STATE']))

telecomDF2.show(30)

Now that necessary data doesn't have DQ I'm able to perform casting to transform from one type to

another

My Choice

85

telecomDF4 = telecomDF2.select(telecomDF2['ID'].cast(IntegerType()).alias('ID'),

 telecomDF2['STATE'],

 telecomDF2['ACCLGT'],

 telecomDF2['INTPLAN'],

 telecomDF2['VMPLAN'],

 telecomDF2['NBVMMSG'],

 telecomDF2['TTDAYMIN'],

 telecomDF2['TTDAYCALLS'],

 telecomDF2['TTDAYCHARGE'],

 telecomDF2['TTDAYMIN']/telecomDF2['TTDAYCALLS'],

 telecomDF2['TTEVEMIN'],

 telecomDF2['TTEVECALLS'],

 telecomDF2['TTEVECHARGE'],

 telecomDF2['TTEVEMIN']/telecomDF2['TTEVECALLS'],

 telecomDF2['TTINTMIN'],

 telecomDF2['TTINTCALLS'],

 telecomDF2['TTINTCHARGE'],

 telecomDF2['TTINTMIN']/telecomDF2['TTINTCALLS'],

 telecomDF2['NBCSCALLS'],

 telecomDF2['TARGET']

)

telecomDF4.show(3)

Registering the dataframe as a Temp Table (so i'll be able to use queries SQL ANSI)

HERE I'M CREATING A REAL TABLE, IT WILL EXIST IN MEMORY, NOT ONLY THE DATAFRAME

telecomDF4.createOrReplaceTempView("telecomTB")

New Data Balance

type(telecomDF4)

Before entering in the Machine Learning Model again let's get 50/50 of the data

pysparkSqlDF = spSession.sql("select * \

 from telecomTB \

 where TARGET == 2")

#pysparkSqlDF.show()

Transforming to Pandas so I'll plot some analysis using Seaborn

pandasDF2 = pysparkSqlDF.toPandas()

len(pandasDF2)

Sampling almost the same quantity of Churn(483)

pandasDF2 = pandasDF2.sample(500)

len(pandasDF2)

86

Getting Churn Data

pysparkSqlDF = spSession.sql("select * \

 from telecomTB \

 where TARGET == 1")

pandasDF1 = pysparkSqlDF.toPandas()

len(pandasDF1)

concat both data

pandasDF = pd.concat([pandasDF1, pandasDF2])

pandasDF.head(3)

pandasDF['TARGET'].value_counts().sort_values()

plt.figure(figsize=(7,7))

plt.pie(pandasDF['TARGET'].value_counts().sort_values(), labels=['Churn', 'No Churn'], colors=['#ff6666',

'#99ff99'], wedgeprops={'linewidth': 7, 'edgecolor': 'white'}, autopct='%1.1f%%')

Transforming the pandas Dataframe to a pyspark Dataframe

pysparkSqlDF = spSession.createDataFrame(pandasDF)

Correlation

Correlation between features

Getting all my data into a dataframe:

#telecomDF4.take(5)

First I'll get each column of telecomDF4

for i in pysparkSqlDF.columns:

 # for each one I'll 'select(i)', and use the 'take' action from [0][0] combination as if it was a matrix

 if not(isinstance(pysparkSqlDF.select(i).take(1)[0][0], str)):

 print("Correlation between Target(Churn) with: ", i, pysparkSqlDF.stat.corr('TARGET', i))

Pre-Processing the Dataset

Pre-Processing my Dataset

Criando um LabeledPoint (target, Vector[features])

Removing not relevant columns or with low correlation to the model, this way I choose the columns I

want the model to have (just observe the selection done in Vectors.dense(....))

ATTENTION TO THIS VERY IMPORTANT CONCEPT!!!!!!!!!

SOME APACHE SPARK MACHINE LEARNING ALGORITHMS (MAINLY THE REGRESSION TYPE) NEED DATA

TO BE

IN A SPECIFIC FORMAT TO PERFORM THE TRAINING(FIT).

TO THIS HAPPEN I NEED TO DELIVER TO THE MODEL THE DATA IN VECTOR FORMAT, SPECIFICALLY

USING A

DENSE OR SPARSE VECTOR. THIS BECAUSE APACHE SPARK WORKS WITH CLUSTER AND THEN IT WILL

87

DISTRIBUTE THESE DATA BETWEEN MACHINES.

from pyspark.ml.linalg import Vectors

def transformFeatures(row):

 obj = (row['TARGET'], Vectors.dense(row['INTPLAN'], row['NBVMMSG'], row['TTDAYMIN'],

row['TTDAYCHARGE'], row['(TTDAYMIN / TTDAYCALLS)'], row['TTEVEMIN'], row['TTEVECHARGE'],

row['NBCSCALLS']))

 return obj

HERE telecomDF4 IS A DATAFRAME, BUT IS BEING CONVERTED TO AN rdd AND THEN I'M ABLE TO USE

THE map FUNCTION

telecomRDD4 = pysparkSqlDF.rdd.map(transformFeatures)

telecomRDD4.take(5)

CONVERTING TO DATAFRAME AGAIN

telecomDF5 = spSession.createDataFrame(telecomRDD4, ['TARGET', 'FEATURES'])

telecomDF5.show(10)

telecomDF5.cache()

Machine Learning Modeling
Train/Test Split

Now entering the Machine Learning Process

import random

random.seed(9)

(train_data, test_data) = telecomDF5.randomSplit([0.7, 0.3])

print(train_data.count(), "data to train my model")

print(test_data.count(), "data to test my model")

Looking for how much data of Churn 'yes'(1) and 'no'(2) we have

#train_data.select('TARGET').distinct().show()

Looking for how much data of Churn 'yes'(1) and 'no'(2) we have in the train_data

train_data.cube('TARGET').agg(count('TARGET').alias('Qt of Data')).orderBy('TARGET').show()

Looking for how much data of Churn 'yes'(1) and 'no'(2) we have in the test_data

test_data.cube('TARGET').agg(count('TARGET').alias('Qt of Data')).orderBy('TARGET').show()

Creating and Training Model

Decision Tree ML Model

from pyspark.ml.classification import DecisionTreeClassifier

from pyspark.ml.evaluation import MulticlassClassificationEvaluator

import random

88

Avoiding Underfitting and Overfitting in Decision Trees

for depth in range(1,15):

 model_v1 = DecisionTreeClassifier(maxDepth=depth, labelCol= 'TARGET', featuresCol= 'FEATURES')

 model_v1_train = model_v1.fit(train_data)

 model_v1_prediction = model_v1_train.transform(test_data)

 evaluator = MulticlassClassificationEvaluator(predictionCol= 'prediction',

 labelCol = 'TARGET',

 metricName = 'accuracy')

 acc = evaluator.evaluate(model_v1_prediction)

 print('In Depth %.0f this model is %.2f%% Accurate.' %(depth, acc*100))

Better Depth is 5

Building the model

model_v1 = DecisionTreeClassifier(maxDepth=5, labelCol= 'TARGET', featuresCol= 'FEATURES')

Training my Model

model_v1_train = model_v1.fit(train_data)

print(model_v1_train.numNodes, "Nodes")

print(model_v1_train.depth, "Depth")

Predictions and Evaluation

Making Predictions with test_data

model_v1_prediction = model_v1_train.transform(test_data)

model_v1_prediction.select('prediction', 'TARGET').collect()

Evaluating my model

evaluator = MulticlassClassificationEvaluator(predictionCol= 'prediction',

 labelCol = 'TARGET',

 metricName = 'accuracy')

acc = evaluator.evaluate(model_v1_prediction)

print('This model is %.2f%% Accurate.' %(acc*100))

Taking the Confusion Matrix

model_v1_prediction.groupBy('TARGET', 'prediction').count().show()

Plotting Confusion Matrix

model_v1_prediction.head(5)

type(model_v1_prediction)

Transforming to Pandas so I'll plot some analysis using Seaborn

pandasDF = model_v1_prediction.toPandas()

Getting Necessarry Data from model_v1_prediction

Actual = pandasDF.ix[:, 'TARGET']

89

Predic = pandasDF.ix[:, 'prediction']

data = {'Actual': Actual,

 'Predicted': Predic

 }

confMatDF = pd.DataFrame(data, columns=['Actual', 'Predicted'])

confMatDF.head(5)

Renaming Target (1-> Churn, 2-> No Churn)

def targetTransformation(lst):

 if lst == 1:

 return 'Churn'

 else:

 return 'No Churn'

auxList1 = list(confMatDF['Actual'])

auxList2 = list(map(targetTransformation, auxList1))

confMatDF['Actual'] = auxList2

auxList1 = list(confMatDF['Predicted'])

auxList2 = list(map(targetTransformation, auxList1))

confMatDF['Predicted'] = auxList2

confusionMatrix = pd.crosstab(confMatDF.Actual, confMatDF.Predicted, rownames=['Actual Value'],

colnames=['Predicted Value'])

confusionMatrix

confusionMatrix.values.sum()

Looking as Percentage of Churn and No Churn

import numpy as np

Setting width and height of the plot-figure

plt.figure(figsize=(18,10))

status = ['True Positive', 'False Negative', 'False Positive', 'True Negative']

val = [x for x in confusionMatrix.values.flatten()]

percent= ['{:.2%}'.format(x) for x in (confusionMatrix.values.flatten()/confusionMatrix.values.sum())]

labels = [f'{q1}\n{q2}\n{q3}' for q1, q2, q3 in zip(status, val, percent)]

labels = np.asarray(labels).reshape(2,2)

sns.heatmap((confusionMatrix/confusionMatrix.values.sum()), annot=labels, fmt='', cmap='BuGn',

cbar=False)

90

sns.set(font_scale=1.5)

plt.title('Confusion Matrix')

New and Unseen Data

Loading Data

Datasets --

Loading data and getting an RDD

textFile CREATES AN RDD

telecomRDD = sc.textFile("projeto4_telecom_teste.csv")

Optimizing performance using cache on RDD

telecomRDD.cache()

Making an Action

telecomRDD.count()

Making another Action

telecomRDD.take(5)

Note that the data is between simple aspects '' (each line), indicating they are strings, so I'll convert it

further using a function I'll create

Feature Engineering

Cleaning data - Removing first line

telecomRDD2 = telecomRDD.filter(lambda x: "state" not in x)

telecomRDD2.count()

Looking Again at my data

telecomRDD2.take(5)

Looking to ALL data and trying to figure out if there is missing values (?, NaN, "", ...)

telecomRDD2.collect()

No Missing Values

Preparing Data to Dataframe

Feature Engineering I - Function

def featengI(data):

 # Dividing data into columns, separating by "," character

 dataList = data.split(",")

 ID = (dataList[0]) # ID

 STATE = str(dataList[1]) # State -> North American Abbreviated States (HI - Hawaii / MT -

Montana / OH - Ohio)

91

 ACCLGT = int(dataList[2]) # Account_Length

 AREACODE = (dataList[3]) # Phone Number Area Code

 #PHONENB = (dataList[4]) # Phone_No -> Phone Number (IT IS NOT IN THE test-train DATA)

 #INTPLAN = (dataList[4]) # International_Plan -> "yes" or "no" (Convert yes->1 or no->2)

 INTPLAN = 1.0 if dataList[4] == '"yes"' else 2.0

 #VMPLAN = (dataList[5]) # Voice_Mail_Plan -> "yes" or "no" (Convert yes->1 or no->2) I THINK

THIS FEATURE IS NOT HELPING AND CAN BE ELIMINATED BECAUSE THE NEXT VARIABLE (NBVMMSG)

ONLY HAS VALUES WHEN THIS IS '1', IT'S LIKE DOUBLE INFORMATION ABOUT THE SAME THING

 VMPLAN = 1.0 if dataList[5] == '"yes"' else 2.0

 NBVMMSG = int(dataList[6]) # Number_Voice_Mail_Messages

 TTDAYMIN = float(dataList[7]) # Total_Day_minutes

 TTDAYCALLS = int(dataList[8]) # Total_Day_Calls

 TTDAYCHARGE = float(dataList[9]) # Total_Day_Charge

 TTEVEMIN = float(dataList[10]) # Total_Eve_Minutes

 TTEVECALLS = int(dataList[11]) # Total_Eve_Calls

 TTEVECHARGE = float(dataList[12]) # Total_Eve_Charge

 TTNGTMIN = float(dataList[13]) # Total_Night_Minutes

 TTNGTCALLS = int(dataList[14]) # Total_Night_Calls

 TTNGTCHARGE = float(dataList[15]) # Total_Night_Charge

 TTINTMIN = float(dataList[16]) # Total_Intl_Minutes

 TTINTCALLS = int(dataList[17]) # Total_Intl_Calls

 TTINTCHARGE = float(dataList[18]) # Total_Intl_Charge

 NBCSCALLS = int(dataList[19]) # Number_Customer_Service_Calls

 #TARGET = (dataList[20]) # Churn (Target) -> "yes" or "no" (Convert yes->1 or no->2)

 TARGET = 1 if dataList[20] == '"yes"' else 2

 # Creating 'lines' using the 'Row' function, preparing to the dataframe analysis, cleaning and

converting the data from string to float

 lines = Row(ID = ID, STATE = STATE, ACCLGT = ACCLGT, AREACODE = AREACODE,

 INTPLAN = INTPLAN, VMPLAN = VMPLAN, NBVMMSG = NBVMMSG,

 TTDAYMIN = TTDAYMIN, TTDAYCALLS = TTDAYCALLS, TTDAYCHARGE = TTDAYCHARGE,

 TTEVEMIN = TTEVEMIN, TTEVECALLS = TTEVECALLS, TTEVECHARGE = TTEVECHARGE,

 TTNGTMIN = TTNGTMIN, TTNGTCALLS = TTNGTCALLS, TTNGTCHARGE = TTNGTCHARGE,

 TTINTMIN = TTINTMIN, TTINTCALLS = TTINTCALLS, TTINTCHARGE = TTINTCHARGE,

 NBCSCALLS = NBCSCALLS, TARGET = TARGET)

 return lines

Applying function above to RDD without headers

telecomRDD3 = telecomRDD2.map(featengI)

Looking at the result

telecomRDD3.cache

telecomRDD3.take(1)

92

All data are in String format, I'll convert to Integer or Float as needed

#schema = StructType([

StructField('ID', StringType(), True)

#])

Creating a Pyspark Dataframe

Creating a Dataframe SO I'M ABLE TO USE THE select FUNCTION FROM SparkSQL

telecomDF = spSession.createDataFrame(telecomRDD3)

type(telecomDF)

Printing telecomDF Object Type and each Row Type

print(telecomDF)

As noted SOME data (ID, STATE) are in String format, I'll convert to Integer or Float as needed

telecomDF.printSchema()

telecomDF.show(5)

Removing Double Quotes in Strings

Function to Remove DoubleQuote (DQ) so I'll transform from String to Integer

def removingDQ(stringData):

 return stringData.replace('"', "")

Using udf -> User Defined Function (Turning Python Functions into PySpark Functions)

Look at this -> https://changhsinlee.com/pyspark-udf/

from pyspark.sql.functions import udf

udf_removingDQ = udf(removingDQ, StringType())

telecomDF2 = telecomDF.withColumn('ID', udf_removingDQ(telecomDF['ID'])).withColumn('STATE',

udf_removingDQ(telecomDF['STATE']))

telecomDF2.show(30)

Now that necessary data doesn't have DQ I'm able to perform casting to transform from one type to

another

As follows there are 2 ways to make this transformation

Transforming Features (Two Possibilities)
My Choice

I'll choose the second one

telecomDF4 = telecomDF2.select(telecomDF2['ID'].cast(IntegerType()).alias('ID'),

 telecomDF2['STATE'],

 telecomDF2['ACCLGT'],

 telecomDF2['INTPLAN'],

 telecomDF2['VMPLAN'],

 telecomDF2['NBVMMSG'],

 telecomDF2['TTDAYMIN'],

93

 telecomDF2['TTDAYCALLS'],

 telecomDF2['TTDAYCHARGE'],

 telecomDF2['TTDAYMIN']/telecomDF2['TTDAYCALLS'],

 telecomDF2['TTEVEMIN'],

 telecomDF2['TTEVECALLS'],

 telecomDF2['TTEVECHARGE'],

 telecomDF2['TTEVEMIN']/telecomDF2['TTEVECALLS'],

 telecomDF2['TTINTMIN'],

 telecomDF2['TTINTCALLS'],

 telecomDF2['TTINTCHARGE'],

 telecomDF2['TTINTMIN']/telecomDF2['TTINTCALLS'],

 telecomDF2['NBCSCALLS'],

 telecomDF2['TARGET']

)

telecomDF4.show(3)

Registering the dataframe as a Temp Table (so i'll be able to use queries SQL ANSI)

HERE I'M CREATING A REAL TABLE, IT WILL EXIST IN MEMORY, NOT ONLY THE DATAFRAME

telecomDF4.createOrReplaceTempView("telecomTB")

Data Balance

Before entering in the Machine Learning Model let's see if we have balanced data so my model will be

fair in predicting both Churn and No Churn

pysparkSqlDF = spSession.sql("select TARGET, count(ID) as INSTANCES \

 from telecomTB \

 group by TARGET")

pysparkSqlDF.show()

Transforming to Pandas so I'll plot some analysis using Seaborn

pandasDF = pysparkSqlDF.toPandas()

plt.figure(figsize=(7,7))

plt.pie(pandasDF['INSTANCES'], labels=['Churn', 'No Churn'], colors=['#ff6666', '#99ff99'],

wedgeprops={'linewidth': 7, 'edgecolor': 'white'}, autopct='%1.1f%%')

The test data provided also has few Churn Data, It's more likeble that the model will have a great

acurracy.

But it's important to notice that in a real environment I highly recommend to acquire more Churn data.

Correlation

Correlation between features

Getting all my data into a dataframe:

#telecomDF4.take(5)

First I'll get each column of telecomDF4

94

for i in telecomDF4.columns:

 # for each one I'll 'select(i)', and use the 'take' action from [0][0] combination as if it was a matrix

 if not(isinstance(telecomDF4.select(i).take(1)[0][0], str)):

 print("Correlation between Target(Churn) with: ", i, telecomDF4.stat.corr('TARGET', i))

Pre-Processing the Dataset

Pre-Processing my Dataset

Criando um LabeledPoint (target, Vector[features])

Removing not relevant columns or with low correlation to the model, this way I choose the columns I

want the model to have (just observe the selection done in Vectors.dense(....))

ATTENTION TO THIS VERY IMPORTANT CONCEPT!!!!!!!!!

SOME APACHE SPARK MACHINE LEARNING ALGORITHMS (MAINLY THE REGRESSION TYPE) NEED DATA

TO BE

IN A SPECIFIC FORMAT TO PERFORM THE TRAINING(FIT).

TO THIS HAPPEN I NEED TO DELIVER TO THE MODEL THE DATA IN VECTOR FORMAT, SPECIFICALLY

USING A

DENSE OR SPARSE VECTOR. THIS BECAUSE APACHE SPARK WORKS WITH CLUSTER AND THEN IT WILL

DISTRIBUTE THESE DATA BETWEEN MACHINES.

from pyspark.ml.linalg import Vectors

def transformFeatures(row):

 obj = (row['TARGET'], Vectors.dense(row['INTPLAN'], row['NBVMMSG'], row['TTDAYMIN'],

row['TTDAYCHARGE'], row['(TTDAYMIN / TTDAYCALLS)'], row['TTEVEMIN'], row['TTEVECHARGE'],

row['NBCSCALLS']))

 return obj

HERE telecomDF4 IS A DATAFRAME, BUT IS BEING CONVERTED TO AN rdd AND THEN I'M ABLE TO USE

THE map FUNCTION

telecomRDD4 = telecomDF4.rdd.map(transformFeatures)

telecomRDD4.take(5)

CONVERTING TO DATAFRAME AGAIN

telecomDF5 = spSession.createDataFrame(telecomRDD4, ['TARGET', 'FEATURES'])

telecomDF5.show(10)

telecomDF5.cache()

Machine Learning Modeling

Making Predictions with test_data

new_data_prediction = model_v1_train.transform(telecomDF5)

Evaluating my model

evaluator = MulticlassClassificationEvaluator(predictionCol= 'prediction',

 labelCol = 'TARGET',

 metricName = 'accuracy')

95

acc = evaluator.evaluate(new_data_prediction)

print('This model is %.2f%% Accurate.' %(acc*100))

Taking the Confusion Matrix

new_data_prediction.groupBy('TARGET', 'prediction').count().show()

Plotting Confusion Matrix

new_data_prediction.head(5)

type(new_data_prediction)

Transforming to Pandas so I'll plot some analysis using Seaborn

pandasDF = new_data_prediction.toPandas()

Getting Necessarry Data from model_v1_prediction

Actual = pandasDF.ix[:, 'TARGET']

Predic = pandasDF.ix[:, 'prediction']

data = {'Actual': Actual,

 'Predicted': Predic

 }

confMatDF = pd.DataFrame(data, columns=['Actual', 'Predicted'])

confMatDF.head(5)

Renaming Target (1-> Churn, 2-> No Churn)

def targetTransformation(lst):

 if lst == 1:

 return 'Churn'

 else:

 return 'No Churn'

auxList1 = list(confMatDF['Actual'])

auxList2 = list(map(targetTransformation, auxList1))

confMatDF['Actual'] = auxList2

auxList1 = list(confMatDF['Predicted'])

auxList2 = list(map(targetTransformation, auxList1))

confMatDF['Predicted'] = auxList2

confusionMatrix = pd.crosstab(confMatDF.Actual, confMatDF.Predicted, rownames=['Actual Value'],

colnames=['Predicted Value'])

confusionMatrix

confusionMatrix.values.sum()

96

Looking as Percentage of Churn and No Churn

import numpy as np

Setting width and height of the plot-figure

plt.figure(figsize=(18,10))

status = ['True Positive', 'False Negative', 'False Positive', 'True Negative']

val = [x for x in confusionMatrix.values.flatten()]

percent= ['{:.2%}'.format(x) for x in (confusionMatrix.values.flatten()/confusionMatrix.values.sum())]

labels = [f'{q1}\n{q2}\n{q3}' for q1, q2, q3 in zip(status, val, percent)]

labels = np.asarray(labels).reshape(2,2)

sns.heatmap((confusionMatrix/confusionMatrix.values.sum()), annot=labels, fmt='', cmap='BuGn',

cbar=False)

sns.set(font_scale=1.5)

plt.title('Confusion Matrix')

As notice, a balanced dataset is better in predicting Churn and lowering False Negative preditions

because the machine learning model will be trained to give better results.

